Generative Adversarial Networks for Crystal Structure Prediction

被引:153
作者
Kim, Sungwon [1 ]
Noh, Juhwan [1 ]
Gu, Geun Ho [1 ]
Aspuru-Guzik, Alan [2 ,3 ,4 ,5 ]
Jung, Yousung [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Daejeon 34141, South Korea
[2] Univ Toronto, Dept Chem, Chem Phys Theory Grp, Toronto, ON M55S 3H6, Canada
[3] Univ Toronto, Dept Comp Sci, Toronto, ON M55S 3H6, Canada
[4] Vector Inst Artificial Intelligence, Toronto, ON M5S 1M1, Canada
[5] Canadian Inst Adv Res CIFAR, Toronto, ON M5S 1M1, Canada
关键词
THROUGHPUT; DESIGN; OPTIMIZATION; PHOTOANODES; STABILITY; DISCOVERY; CAPACITY;
D O I
10.1021/acscentsci.0c00426
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The constant demand for novel functional materials calls for efficient strategies to accelerate the materials discovery, and crystal structure prediction is one of the most fundamental tasks along that direction. In addressing this challenge, generative models can offer new opportunities since they allow for the continuous navigation of chemical space via latent spaces. In this work, we employ a crystal representation that is inversion-free based on unit cell and fractional atomic coordinates and build a generative adversarial network for crystal structures. The proposed model is applied to generate the Mg-Mn-O ternary materials with the theoretical evaluation of their photoanode properties for high-throughput virtual screening (HTVS). The proposed generative HTVS framework predicts 23 new crystal structures with reasonable calculated stability and band gap. These findings suggest that the generative model can be an effective way to explore hidden portions of the chemical space, an area that is usually unreachable when conventional substitution-based discovery is employed.
引用
收藏
页码:1412 / 1420
页数:9
相关论文
共 64 条
  • [1] [Anonymous], 2019, ARXIV190900949
  • [2] [Anonymous], 2017, ARXIV PREPRINT ARXIV
  • [3] High-throughput computational design of cathode coatings for Li-ion batteries
    Aykol, Muratahan
    Kim, Soo
    Hegde, Vinay I.
    Snydacker, David
    Lu, Zhi
    Hao, Shiqiang
    Kirklin, Scott
    Morgan, Dane
    Wolverton, C.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [4] High-throughput screening for antiferromagnetic Heusler compounds using density functional theory
    Balluff, Jan
    Diekmann, Kevin
    Reiss, Guenter
    Meinert, Markus
    [J]. PHYSICAL REVIEW MATERIALS, 2017, 1 (03):
  • [5] New Light-Harvesting Materials Using Accurate and Efficient Bandgap Calculations
    Castelli, Ivano E.
    Huser, Falco
    Pandey, Mohnish
    Li, Hong
    Thygesen, Kristian S.
    Seger, Brian
    Jain, Anubhav
    Persson, Kristin A.
    Ceder, Gerbrand
    Jacobsen, Karsten W.
    [J]. ADVANCED ENERGY MATERIALS, 2015, 5 (02)
  • [6] AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
    Curtarolo, Stefano
    Setyawan, Wahyu
    Wang, Shidong
    Xue, Junkai
    Yang, Kesong
    Taylor, Richard H.
    Nelson, Lance J.
    Hart, Gus L. W.
    Sanvito, Stefano
    Buongiorno-Nardelli, Marco
    Mingo, Natalio
    Levy, Ohad
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 : 227 - 235
  • [7] Data-Driven Learning of Total and Local Energies in Elemental Boron
    Deringer, Volker L.
    Pickard, Chris J.
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (15)
  • [8] Convolutional Neural Network With Data Augmentation for SAR Target Recognition
    Ding, Jun
    Chen, Bo
    Liu, Hongwei
    Huang, Mengyuan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) : 364 - 368
  • [9] Fawzi A, 2016, IEEE IMAGE PROC, P3688, DOI 10.1109/ICIP.2016.7533048
  • [10] Furukawa H., 2017, IEICE Technical Report, DOI https://doi.org/10.48550/arXiv.1708.07920