A regularized robust design criterion for uncertain data

被引:64
作者
Sayed, AH [1 ]
Nascimento, VH
Cipparrone, FAM
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Sao Paulo, Dept Elect Syst Engn, PSI, EP, BR-05508900 Sao Paulo, Brazil
关键词
least-squares; regularization; robustness; min-max; uncertainty; game problem;
D O I
10.1137/S0895479800380799
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper formulates and solves a robust criterion for least-squares designs in the presence of uncertain data. Compared with earlier studies, the proposed criterion incorporates simultaneously both regularization and weighting and applies to a large class of uncertainties. The solution method is based on reducing a vector optimization problem to an equivalent scalar minimization problem of a provably unimodal cost function, thus achieving considerable reduction in computational complexity.
引用
收藏
页码:1120 / 1142
页数:23
相关论文
共 18 条
  • [1] Basar T., 1999, Dynamic Noncooperative Game Theory, V23
  • [2] Bryson A. E., 1969, Applied Optimal Control: Optimization, Estimation, and Control
  • [3] Parameter estimation in the presence of bounded data uncertainties
    Chandrasekaran, S
    Golub, GH
    Gu, M
    Sayed, AH
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (01) : 235 - 252
  • [4] Robustness analysis and control system design for a hydraulic servo system
    Cheng, Yi
    De Moor, Bart L.R.
    [J]. IEEE Transactions on Control Systems Technology, 1994, 2 (03) : 183 - 197
  • [5] Fletcher R., 1987, PRACTICAL METHODS OP, DOI [DOI 10.1002/9781118723203, 10.1002/9781118723203]
  • [6] GHAOUI LE, 1997, SIAM J MATRIX ANAL A, V18, P1035, DOI DOI 10.1137/S0895479896298130
  • [7] Hassibi B., 1999, INDEFINITE QUADRATIC
  • [8] Kailath T, 2000, PR H INF SY, pXIX
  • [9] LUENBERGER D. G., 1969, Optimization by Vector Space Methods
  • [10] NASCIMENTO VH, 1999, P AM CONTR C SAN DIE, V1, P419