Quantum extension of conditional probability

被引:77
作者
Cerf, NJ [1 ]
Adami, C
机构
[1] CALTECH, WK Kellogg Radiat Lab, Pasadena, CA 91125 USA
[2] CALTECH, Jet Prop Lab, Informat Syst Technol Sect, Pasadena, CA 91109 USA
关键词
D O I
10.1103/PhysRevA.60.893
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze properties of the quantum conditional amplitude operator [Phys. Rev. Lett. 74, 5194 (1997)], which plays a role similar to that of the conditional probability in classical information theory. The spectrum of the conditional operator that characterizes a quantum bipartite system is shown to be invariant under local unitary transformations and reflects its inseparability. More specifically, it is proven that the conditional amplitude operator of a separable state cannot have an eigenvalue exceeding 1, which results in a necessary condition for separability. A related separability criterion based on the non-negativity of the von Neumann conditional entropy is also exhibited. [S1050-2947(99)00608-3].
引用
收藏
页码:893 / 897
页数:5
相关论文
共 18 条
[1]   CONDITIONAL QUANTUM DYNAMICS AND LOGIC GATES [J].
BARENCO, A ;
DEUTSCH, D ;
EKERT, A ;
JOZSA, R .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4083-4086
[2]   ON PROBLEM OF HIDDEN VARIABLES IN QUANTUM MECHANICS [J].
BELL, JS .
REVIEWS OF MODERN PHYSICS, 1966, 38 (03) :447-&
[3]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[4]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[5]   Unextendible product bases and bound entanglement [J].
Bennett, CH ;
DiVincenzo, DP ;
Mor, T ;
Shor, PW ;
Smolin, JA ;
Terhal, BM .
PHYSICAL REVIEW LETTERS, 1999, 82 (26) :5385-5388
[6]   Reduction criterion for separability [J].
Cerf, NJ ;
Adami, C ;
Gingrich, RM .
PHYSICAL REVIEW A, 1999, 60 (02) :898-909
[7]   Negative entropy and information in quantum mechanics [J].
Cerf, NJ ;
Adami, C .
PHYSICAL REVIEW LETTERS, 1997, 79 (26) :5194-5197
[8]   Entropic Bell inequalities [J].
Cerf, NJ ;
Adami, C .
PHYSICAL REVIEW A, 1997, 55 (05) :3371-3374
[9]  
Cerf NJ, 1997, FUND THEOR, V81, P77
[10]   QUANTUM COMPUTATION [J].
DIVINCENZO, DP .
SCIENCE, 1995, 270 (5234) :255-261