Quantum extension of conditional probability

被引:77
作者
Cerf, NJ [1 ]
Adami, C
机构
[1] CALTECH, WK Kellogg Radiat Lab, Pasadena, CA 91125 USA
[2] CALTECH, Jet Prop Lab, Informat Syst Technol Sect, Pasadena, CA 91109 USA
关键词
D O I
10.1103/PhysRevA.60.893
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze properties of the quantum conditional amplitude operator [Phys. Rev. Lett. 74, 5194 (1997)], which plays a role similar to that of the conditional probability in classical information theory. The spectrum of the conditional operator that characterizes a quantum bipartite system is shown to be invariant under local unitary transformations and reflects its inseparability. More specifically, it is proven that the conditional amplitude operator of a separable state cannot have an eigenvalue exceeding 1, which results in a necessary condition for separability. A related separability criterion based on the non-negativity of the von Neumann conditional entropy is also exhibited. [S1050-2947(99)00608-3].
引用
收藏
页码:893 / 897
页数:5
相关论文
共 18 条
[11]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[12]  
Horn R. A., 1986, Matrix analysis
[13]   Mixed-state entanglement and distillation: Is there a "bound" entanglement in nature? [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5239-5242
[14]   Information-theoretic aspects of inseparability of mixed states [J].
Horodecki, R ;
Horodecki, M .
PHYSICAL REVIEW A, 1996, 54 (03) :1838-1843
[15]  
REED M, 1979, METHODS MODERN MATH, V1, P295
[16]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (03) :379-423
[17]   GENERAL PROPERTIES OF ENTROPY [J].
WEHRL, A .
REVIEWS OF MODERN PHYSICS, 1978, 50 (02) :221-260
[18]   QUANTUM STATES WITH EINSTEIN-PODOLSKY-ROSEN CORRELATIONS ADMITTING A HIDDEN-VARIABLE MODEL [J].
WERNER, RF .
PHYSICAL REVIEW A, 1989, 40 (08) :4277-4281