Geometrical finiteness, holography, and the Banados-Teitelboim-Zanelli black hole

被引:14
作者
Birmingham, D [1 ]
Kennedy, C
Sen, S
Wilkins, A
机构
[1] Natl Univ Ireland Univ Coll Dublin, Dept Math Phys, Dublin 4, Ireland
[2] Univ Dublin Trinity Coll, Sch Math, Dublin 2, Ireland
关键词
D O I
10.1103/PhysRevLett.82.4164
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how a theorem of Sullivan provides a precise mathematical statement of a 3D holographic principle, that is, the hyperbolic structure of a certain class of 3D manifolds is completely determined in terms of the corresponding Teichmuller space of the boundary. We explore the consequences of this theorem in the context of the Euclidean Banados-Teitelboim-Zanelli black hole in three dimensions. [S0031-9007(99)09228-5].
引用
收藏
页码:4164 / 4167
页数:4
相关论文
共 34 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
[Anonymous], HEPTH9711200
[3]   BLACK-HOLE IN 3-DIMENSIONAL SPACETIME [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1849-1851
[4]   GEOMETRY OF THE 2+1 BLACK-HOLE [J].
BANADOS, M ;
HENNEAUX, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW D, 1993, 48 (04) :1506-1525
[5]  
BANADOS M, HEPTH9204099
[6]  
BANADOS M, GRQC9302012
[7]   Entropy of three-dimensional black holes in string theory [J].
Birmingham, D ;
Sachs, I ;
Sen, S .
PHYSICS LETTERS B, 1998, 424 (3-4) :275-280
[8]  
BIRMINGHAM D, HEPTH9801019
[9]   GEOMETRICAL FINITENESS FOR HYPERBOLIC GROUPS [J].
BOWDITCH, BH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 113 (02) :245-317
[10]   CENTRAL CHARGES IN THE CANONICAL REALIZATION OF ASYMPTOTIC SYMMETRIES - AN EXAMPLE FROM 3-DIMENSIONAL GRAVITY [J].
BROWN, JD ;
HENNEAUX, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (02) :207-226