The incomplete factorization multigraph algorithm

被引:22
作者
Bank, RE [1 ]
Smith, RK
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Lucent Technol, Bell Labs, Murray Hill, NJ 07974 USA
关键词
hierarchical basis; algebraic multigrid; incomplete LU factorization;
D O I
10.1137/S1064827597319520
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new family of multigraph algorithms, ILU-MG, based upon an incomplete sparse matrix factorization using a particular ordering and allowing a limited amount of fill-in. While much of the motivation for multigraph comes from multigrid ideas, ILU-MG is distinctly different from algebraic multilevel methods. The graph of the sparse matrix A is recursively coarsened by eliminating vertices using a graph model similar to Gaussian elimination. Incomplete factorizations are obtained by allowing only the fill-in generated by the vertex parents associated with each vertex. Multigraph is numerically compared with algebraic multigrid on some examples arising from discretizations of partial differential equations on unstructured grids.
引用
收藏
页码:1349 / 1364
页数:16
相关论文
共 28 条
[1]  
[Anonymous], FRONTIERS APPL MATH
[2]  
AXELSSON O, 1989, NUMER MATH, V56, P157, DOI 10.1007/BF01409783
[3]  
AXELSSON O, 1996, AMLI 96 P C ALG MULT
[4]  
Axelsson O., 1993, P 2 INT C NUM AN PLO, P13
[5]   A class of hybrid algebraic multilevel preconditioning methods [J].
Bai, ZZ .
APPLIED NUMERICAL MATHEMATICS, 1996, 19 (04) :389-399
[6]  
Bank R., 1996, ACTA NUMERICA 1996, P1
[7]   An algorithm for coarsening unstructured meshes [J].
Bank, RE ;
Xu, JC .
NUMERISCHE MATHEMATIK, 1996, 73 (01) :1-36
[8]   THE HIERARCHICAL BASIS MULTIGRID METHOD [J].
BANK, RE ;
DUPONT, TF ;
YSERENTANT, H .
NUMERISCHE MATHEMATIK, 1988, 52 (04) :427-458
[9]   GENERAL SPARSE ELIMINATION REQUIRES NO PERMANENT INTEGER STORAGE [J].
BANK, RE ;
SMITH, RK .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (04) :574-584
[10]  
BANK RE, IN PRESS NUMER MATH