Regulation of pancreatic beta-cell mitochondrial metabolism: Influence of Ca2+, substrate and ADP

被引:72
作者
Civelek, VN
Deeney, JT
Shalosky, NJ
Tornheim, K
Hansford, RG
Prentki, M
Corkey, BE
机构
[1] BOSTON UNIV,MED CTR,DIABET & METAB UNIT,EVANS DEPT MED,BOSTON,MA 02118
[2] BOSTON UNIV,MED CTR,DEPT BIOCHEM,BOSTON,MA 02118
[3] NIA,ENERGY METAB & BIOENERGET SECT,NIH,FRANCIS SCOTT KEY MED CTR,BALTIMORE,MD 21224
[4] UNIV MONTREAL,DEPT NUTR,MOL NUTR UNIT,MONTREAL,PQ H3C 3J7,CANADA
关键词
D O I
10.1042/bj3180615
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To gain insight into the regulation of pancreatic beta-cell mitochondrial metabolism, the direct effects on respiration of different mitochondrial substrates, variations in the ATP/ADP ratio and free Ca2+ were examined using isolated mitochondria and permeabilized clonal pancreatic beta-cells (HIT). Respiration from pyru vate was high and not influenced by Ca2+ in State 3 or under various redox states and fixed values of the ATP/ADP ratio; nevertheless, high Ca2+ elevated pyridine nucleotide fluorescence, indicating activation of pyruvate dehydrogenase by Ca2+. Furthermore, in the presence of pyruvate, elevated Ca2+ stimulated CO2 production from pyruvate, increased citrate production and efflux from the mitochondria and inhibited CO2 production from palmitate. The latter observation suggests that beta-cell fatty acid oxidation is not regulated exclusively by malonyl-CoA but also by the mitochondrial redox state. alpha-Glycerophosphate (alpha-GP) oxidation was Ca2+-dependent with a half-maximal rate observed at around 300 nM Ca2+. We have recently demonstrated that increases in respiration precede increases in Ca2+ in glucose-stimulated clonal pancreatic beta-cells (HIT), indicating that Ca2+ is not responsible for the initial stimulation of respiration [Civelek, Deeney, Kubik, Schultz, Tornheim and Corkey (1996) Biochem. J. 315, 1015-1019]. It is suggested that respiration is stimulated by increased substrate (alpha-GP and pyruvate) supply together with oscillatory increases in ADP [Nilsson, Schultz, Berggren, Corkey and Tornheim (1996) Biochem. J. 314, 91-94]. The rise in Ca2+, which in itself may not significantly increase net respiration, could have the important functions of (1) activating the alpha-GP shuttle, to maintain an oxidized cytosol and high glycolytic flux; (2) activating pyruvate dehydrogenase, and indirectly pyruvate carboxylase, to sustain production of citrate and hence the putative signal coupling factors, malonyl-CoA and acyl-CoA; and (3) increasing mitochondrial redox state to implement the switch from fatty acid to pyruvate oxidation.
引用
收藏
页码:615 / 621
页数:7
相关论文
共 45 条