TRPM7 regulates cell adhesion by controlling the calcium-dependent protease calpain

被引:185
作者
Su, LT
Agapito, MA
Li, MJ
Sinomson, WTN
Huttenlocher, A
Habas, R
Yue, LX
Runnels, LW
机构
[1] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Pharmacol, Piscataway, NJ 08854 USA
[2] Univ Connecticut, Ctr Hlth, Dept Cell Biol, Farmington, CT 06030 USA
[3] Univ Wisconsin, Dept Pediat, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Pharmacol, Madison, WI 53706 USA
[5] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Biochem, Piscataway, NJ 08854 USA
关键词
D O I
10.1074/jbc.M512885200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
m-Calpain is a protease implicated in the control of cell adhesion through focal adhesion disassembly. The mechanism by which the enzyme is spatially and temporally controlled is not well understood, particularly because the dependence of calpain on calcium exceeds the submicromolar concentrations normally observed in cells. Here we show that the channel kinase TRPM7 localizes to peripheral adhesion complexes with m-calpain, where it regulates cell adhesion by controlling the activity of the protease. Our research revealed that overexpression of TRPM7 in cells caused cell rounding with a concomitant loss of cell adhesion that is dependent upon the channel of the protein but not its kinase activities. Knockdown of m-calpain blocked TRPM7-induced cell rounding and cell detachment. Silencing of TRPM7 by RNA interference, however, strengthened cell adhesion and increased the number of peripheral adhesion complexes in the cells. Together, our results suggest that the ion channel TRPM7 regulates cell adhesion through m-calpain by mediating the local influx of calcium into peripheral adhesion complexes.
引用
收藏
页码:11260 / 11270
页数:11
相关论文
共 67 条
[1]   A key role for TRPM7 channels in anoxic neuronal death [J].
Aarts, M ;
Iihara, K ;
Wei, WL ;
Xiong, ZG ;
Arundine, M ;
Cerwinski, W ;
MacDonald, JF ;
Tymianski, M .
CELL, 2003, 115 (07) :863-877
[2]   Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity [J].
Bano, D ;
Young, KW ;
Guerin, CJ ;
LeFeuvre, R ;
Rothwell, NJ ;
Naldini, L ;
Rizzuto, R ;
Carafoli, E ;
Nicotera, P .
CELL, 2005, 120 (02) :275-285
[3]   Evidence that β3 integrin-induced Rac activation involves the calpain-dependent formation of integrin clusters that are distinct from the focal complexes and focal adhesions that form as Rac and RhoA become active [J].
Bialkowska, K ;
Kulkarni, S ;
Du, XP ;
Goll, DE ;
Saido, TC ;
Fox, JEB .
JOURNAL OF CELL BIOLOGY, 2000, 151 (03) :685-695
[4]   Calpain activity is generally elevated during transformation but has oncogene-specific biological functions [J].
Carragher, NO ;
Fonseca, BD ;
Frame, MC .
NEOPLASIA, 2004, 6 (01) :53-73
[5]   Calpain: a role in cell transformation and migration [J].
Carragher, NO ;
Frame, MC .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2002, 34 (12) :1539-1543
[6]   v-Src-induced modulation of the calpain-calpastatin proteolytic system regulates transformation [J].
Carragher, NO ;
Westhoff, MA ;
Riley, D ;
Potter, DA ;
Dutt, P ;
Elce, JS ;
Greer, PA ;
Frame, MC .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (01) :257-269
[7]   Calpain and mitochondria in ischemia/reperfusion injury [J].
Chen, M ;
Won, DJ ;
Krajewski, S ;
Gottlieb, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (32) :29181-29186
[8]   TRP channels as cellular sensors [J].
Clapham, DE .
NATURE, 2003, 426 (6966) :517-524
[9]   The TRP ion channel family [J].
Clapham, DE ;
Runnels, LW ;
Strübing, C .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (06) :387-396
[10]   Phosphorylation of annexin I by TRPM7 channel-kinase [J].
Dorovkov, MV ;
Ryazanov, AG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (49) :50643-50646