The bundling activity of vasodilator-stimulated phosphoprotein is required for filopodium formation

被引:122
作者
Schirenbeck, Antje
Arasada, Rajesh
Bretschneider, Till
Stradal, Theresia E. B.
Schleicher, Michael [1 ]
Faix, Jan
机构
[1] Univ Munich, Dept Cell Biol, D-80336 Munich, Germany
[2] Max Planck Inst Biochem, Dept Cell Dynam, D-82152 Martinsried, Germany
[3] German Res Ctr Biotechnol, Signalling & Motibil Grp, D-38124 Braunschweig, Germany
[4] Hannover Med Sch, Inst Biophys Chem, D-30623 Hannover, Germany
关键词
actin cytoskeleton; Dictyostelium; formin;
D O I
10.1073/pnas.0511243103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Filopodia are highly dynamic finger-like cell protrusions filled with parallel bundles of actin filaments. Previously we have shown that Diaphanous-related formin dDia2 is involved in the formation of filopodia. Another key player for the formation of filopodia across many species is vasodilator-stimulated phosphoprotein (VASP). It has been proposed that the essential role of VASP for formation of filopodia is its competition with capping proteins for filament barbed-end interaction. To better understand the function of VASP in filopodium formation, we analyzed the in vitro and in vivo properties of Dictyostelium VASP (DdVASP) and extended our findings to human VASP. Recombinant VASP from both species nucleated and bundled actin filaments, but did not compete with capping proteins or block depolymerization from barbed ends. Together with the finding that DdVASP binds to the FH2 domain of dDia2, these data indicate that the crucial role of VASP in filopodium formation is different from uncapping of actin filaments. To identify the activity of DdVASP required in this process, rescue experiments of DdVASP-null cells with mutant DdVASP constructs were performed. Only WT DdVASP, but not a mutant lacking the F-actin bundling activity, could rescue the ability of these cells to form WT-like filopodia. Our data suggest that DdVASP is complexed with dDia2 in filopodial tips and support formin-mediated filament elongation by bundling nascent actin filaments.
引用
收藏
页码:7694 / 7699
页数:6
相关论文
共 47 条
[1]   Ena/VASP proteins contribute to Listeria monocytogenes pathogenesis by controlling temporal and spatial persistence of bacterial actin-based motility [J].
Auerbuch, V ;
Loureiro, JJ ;
Gertler, FB ;
Theriot, JA ;
Portnoy, DA .
MOLECULAR MICROBIOLOGY, 2003, 49 (05) :1361-1375
[2]   The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation [J].
Bachmann, C ;
Fischer, L ;
Walter, U ;
Reinhard, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (33) :23549-23557
[3]   Ena/VASP proteins enhance actin polymerization in the presence of barbed end capping proteins [J].
Barzik, M ;
Kotova, TI ;
Higgs, HN ;
Hazelwood, L ;
Hanein, D ;
Gertler, FB ;
Schafer, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (31) :28653-28662
[4]   Negative regulation of fibroblast motility by Ena/VASP proteins [J].
Bear, JE ;
Loureiro, JJ ;
Libova, I ;
Fässler, R ;
Wehland, J ;
Gertler, FB .
CELL, 2000, 101 (07) :717-728
[5]   Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility [J].
Bear, JE ;
Svitkina, TM ;
Krause, M ;
Schafer, DA ;
Loureiro, JJ ;
Strasser, GA ;
Maly, IV ;
Chaga, OY ;
Cooper, JA ;
Borisy, GG ;
Gertler, FB .
CELL, 2002, 109 (04) :509-521
[6]   Myosin-X is an unconventional myosin that undergoes intrafilopodial motility [J].
Berg, JS ;
Cheney, RE .
NATURE CELL BIOLOGY, 2002, 4 (03) :246-250
[7]   Cascade pathway of filopodia formation downstream of SCAR [J].
Biyasheva, A ;
Svitkina, T ;
Kunda, P ;
Baum, B ;
Borisy, G .
JOURNAL OF CELL SCIENCE, 2004, 117 (06) :837-848
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   Membrane tether formation from blebbing cells [J].
Dai, JW ;
Sheetz, MP .
BIOPHYSICAL JOURNAL, 1999, 77 (06) :3363-3370
[10]  
Dumontier M, 2000, J CELL SCI, V113, P2253