Facile synthesis of loaf-like ZnMn2O4 nanorods and their excellent performance in Li-ion batteries

被引:181
作者
Bai, Zhongchao [1 ]
Fan, Na [2 ,3 ]
Sun, Changhui [2 ,3 ]
Ju, Zhicheng [2 ,3 ]
Guo, Chunli [1 ]
Yang, Jian [4 ]
Qian, Yitai [2 ,3 ,4 ]
机构
[1] Taiyuan Univ Technol, Res Inst Surface Engn, Taiyuan 030024, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Dept Chem, Hefei 230026, Peoples R China
[4] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China
关键词
ELECTRODE MATERIALS; ANODE MATERIAL; LITHIUM; CAPACITY; LIMN2O4; SPINEL; NANOMATERIALS; NANOWIRES; GRAPHITE; MNOOH;
D O I
10.1039/c3nr33211j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Binary transition metal oxides have been attracting extensive attention as promising anode materials for lithium-ion batteries, due to their high theoretical specific capacity, superior rate performance and good cycling stability. Here, loaf-like ZnMn2O4 nanorods with diameters of 80-150 nm and lengths of several micrometers are successfully synthesized by annealing MnOOH nanorods and Zn(OH)(2) powders at 700 degrees C for 2 h. The electrochemical properties of the loaf-like ZnMn2O4 nanorods as an anode material are investigated in terms of their reversible capacity, and cycling performance for lithium ion batteries. The loaf-like ZnMn2O4 nanorods exhibit a reversible capacity of 517 mA h g(-1) at a current density of 500 mA g(-1) after 100 cycles. The reversible capacity of the nanorods still could be kept at 457 mA h g(-1) even at 1000 mA g(-1). The improved electrochemical performance can be ascribed to the one-dimensional shape and the porous structure of the loaf-like ZnMn2O4 nanorods, which offers the electrode convenient electron transport pathways and sufficient void spaces to tolerate the volume change during the Li+ intercalation. These results suggest the promising potential of the loaf-like ZnMn2O4 nanorods in lithium-ion batteries.
引用
收藏
页码:2442 / 2447
页数:6
相关论文
共 41 条
[1]   Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries [J].
Amatucci, G ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (12) :K31-K46
[2]   Porous Electrode Materials for Lithium-Ion Batteries - How to Prepare Them and What Makes Them Special [J].
Anh Vu ;
Qian, Yuqiang ;
Stein, Andreas .
ADVANCED ENERGY MATERIALS, 2012, 2 (09) :1056-1085
[3]   LiMn2O4 nanorods synthesized by MnOOH template for lithium-ion batteries with good performance [J].
Bai, Zhongchao ;
Fan, Na ;
Ju, Zhicheng ;
Sun, Changhui ;
Qian, Yitai .
MATERIALS LETTERS, 2012, 76 :124-126
[4]   Branched Mesoporous Mn3O4 Nanorods: Facile Synthesis and Catalysis in the Degradation of Methylene Blue [J].
Bai, Zhongchao ;
Sun, Bo ;
Fan, Na ;
Ju, Zhicheng ;
Li, Menghua ;
Xu, Liqiang ;
Qian, Yitai .
CHEMISTRY-A EUROPEAN JOURNAL, 2012, 18 (17) :5319-5324
[5]   Synthesis, characterization, and li-electrochemical performance of highly porous Co3O4 powders [J].
Binotto, G. ;
Larcher, D. ;
Prakash, A. S. ;
Urbina, R. Herrera ;
Hegde, M. S. ;
Tarascon, J-M. .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :3032-3040
[6]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[7]   Surface-modified graphite as an improved intercalating anode for lithium-ion batteries [J].
Cao, YL ;
Xiao, LF ;
Ai, XP ;
Yang, HX .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (02) :A30-A33
[8]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[9]   Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries [J].
Cheng, Fangyi ;
Wang, Hongbo ;
Zhu, Zhiqiang ;
Wang, Yan ;
Zhang, Tianran ;
Tao, Zhanliang ;
Chen, Jun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3668-3675
[10]   ZnMn2O4 nanoparticles synthesized by a hydrothermal method as an anode material for Li-ion batteries [J].
Courtel, Fabrice M. ;
Abu-Lebdeh, Yaser ;
Davidson, Isobel J. .
ELECTROCHIMICA ACTA, 2012, 71 :123-127