Clustering feature vectors with mixed numerical and categorical attributes

被引:6
作者
Brouwer, Roelof K.
机构
[1] Department of Mechanical and Mechatronics Engineering, Stellenbosch University
基金
加拿大自然科学与工程研究理事会;
关键词
Fuzzy clustering; gradient descent; categorical; nominal clustering; fuzzy c-means;
D O I
10.1080/18756891.2008.9727625
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a method for finding a fuzzy membership matrix in case of numerical and categorical features. The set of feature vectors with mixed features is mapped to a set of feature vectors with only real valued components with the condition that the new set of vectors has the same proximity matrix as the original feature vectors. This new set of vectors is then clustered using fuzzy c-means. Simulations show the method to be very effective in comparison with other methods.
引用
收藏
页码:285 / 298
页数:14
相关论文
共 61 条
[31]  
Kaufman L., 2009, Finding groups in data: An introduction to cluster analysis
[32]   Fuzzy clustering of categorical data using fuzzy centroids [J].
Kim, DW ;
Lee, KH ;
Lee, D .
PATTERN RECOGNITION LETTERS, 2004, 25 (11) :1263-1271
[33]   Projected clustering for categorical datasets [J].
Kim, Minho ;
Ramakrishna, R. S. .
PATTERN RECOGNITION LETTERS, 2006, 27 (12) :1405-1417
[34]  
Klosgen W., 1996, P ADV KNOWL DISC DAT, P573
[35]  
Li HF, 2004, 2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, P142
[36]  
LI J, 2003, INT SOC OPTICAL ENG, V5286, P171
[37]  
LI T, 2004, 21 INT C MACH LEARN, P68
[38]  
MAHNHOON L, 2007, FOCI 2007 IEEE S FDN, P538
[39]   AUTOMATED CONSTRUCTION OF CLASSIFICATIONS - CONCEPTUAL CLUSTERING VERSUS NUMERICAL TAXONOMY [J].
MICHALSKI, RS ;
STEPP, RE .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1983, 5 (04) :396-410
[40]   A STUDY OF THE COMPARABILITY OF EXTERNAL CRITERIA FOR HIERARCHICAL CLUSTER-ANALYSIS [J].
MILLIGAN, GW ;
COOPER, MC .
MULTIVARIATE BEHAVIORAL RESEARCH, 1986, 21 (04) :441-458