Significance Analysis of Spectral Count Data in Label-free Shotgun Proteomics

被引:283
作者
Choi, Hyungwon [1 ,2 ]
Fermin, Damian [1 ]
Nesvizhskii, Alexey I. [1 ,3 ]
机构
[1] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Ctr Computat Med & Biol, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1074/mcp.M800203-MCP200
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spectral counting has become a commonly used approach for measuring protein abundance in label-free shotgun proteomics. At the same time, the development of data analysis methods has lagged behind. Currently most studies utilizing spectral counts rely on simple data transforms and posthoc corrections of conventional signal-to-noise ratio statistics. However, these adjustments can neither handle the bias toward high abundance proteins nor deal with the drawbacks due to the limited number of replicates. We present a novel statistical framework (QSpec) for the significance analysis of differential expression with extensions to a variety of experimental design factors and adjustments for protein properties. Using synthetic and real experimental data sets, we show that the proposed method outperforms conventional statistical methods that search for differential expression for individual proteins. We illustrate the flexibility of the model by analyzing a data set with a complicated experimental design involving cellular localization and time course. Molecular & Cellular Proteomics 7:2373-2385, 2008.
引用
收藏
页码:2373 / 2385
页数:13
相关论文
共 39 条
[1]   BABELOMICS:: a systems biology perspective in the functional annotation of genome-scale experiments [J].
Al-Shahrour, Fatima ;
Minguez, Pablo ;
Tarraga, Joaquin ;
Montaner, David ;
Alloza, Eva ;
Vaquerizas, Juan M. ;
Conde, Lucia ;
Blaschke, Christian ;
Vera, Javier ;
Dopazo, Joaquin .
NUCLEIC ACIDS RESEARCH, 2006, 34 :W472-W476
[2]   Quantitative mass spectrometry in proteomics: a critical review [J].
Bantscheff, Marcus ;
Schirle, Markus ;
Sweetman, Gavain ;
Rick, Jens ;
Kuster, Bernhard .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2007, 389 (04) :1017-1031
[3]   Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling [J].
Blondeau, F ;
Ritter, B ;
Allaire, PD ;
Wasiak, S ;
Girard, M ;
Hussain, NK ;
Angers, A ;
Legendre-Guillemin, V ;
Roy, L ;
Boismenu, D ;
Kearney, RE ;
Bell, AW ;
Bergeron, JJM ;
McPherson, PS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (11) :3833-3838
[4]   Clustering analysis of SAGE data using a Poisson approach [J].
Cai, L ;
Huang, HY ;
Blackshaw, S ;
Liu, JS ;
Cepko, C ;
Wong, WH .
GENOME BIOLOGY, 2004, 5 (07)
[5]   Differential proteomics via probabilistic peptide identification scores [J].
Colinge, J ;
Chiappe, D ;
Lagache, S ;
Moniatte, M ;
Bougueleret, L .
ANALYTICAL CHEMISTRY, 2005, 77 (02) :596-606
[6]   DAVID: Database for annotation, visualization, and integrated discovery [J].
Dennis, G ;
Sherman, BT ;
Hosack, DA ;
Yang, J ;
Gao, W ;
Lane, HC ;
Lempicki, RA .
GENOME BIOLOGY, 2003, 4 (09)
[7]  
Do KA, 2006, BAYESIAN INFERENCE FOR GENE EXPRESSION AND PROTEOMICS, P1, DOI 10.2277/ 052186092X
[8]   Review - Mass spectrometry and protein analysis [J].
Domon, B ;
Aebersold, R .
SCIENCE, 2006, 312 (5771) :212-217
[9]   Large-scale simultaneous hypothesis testing: The choice of a null hypothesis [J].
Efron, B .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (465) :96-104
[10]   Size, power and false discovery rates [J].
Efron, Bradley .
ANNALS OF STATISTICS, 2007, 35 (04) :1351-1377