The low-temperature phase behavior of two 2:1 hard-core electrolyte models has been investigated by Monte Carlo simulations. In the first model, both bivalent cations and monovalent anions are spherical, and the charges are located at the ion's centers; in the second model, bivalent cations are modeled as rigid dimers composed of two tangent hard spheres, each carrying a positive charge at the center. It is found that the critical temperature and the critical density are strongly affected by the size asymmetry and the shape of the ions. The results presented in this work provide insights into the behavior of charged colloidal suspensions and polyelectrolytes, where large, symmetric or asymmetric ionic species carrying like charges can attract each other and give rise to thermodynamically unstable conditions.