Inwardly rectifying potassium channels: Their molecular heterogeneity and function

被引:198
作者
Isomoto, S [1 ]
Kondo, C [1 ]
Kurachi, Y [1 ]
机构
[1] OSAKA UNIV, FAC MED, DEPT PHARMACOL 2, SUITA, OSAKA 565, JAPAN
关键词
inwardly rectifying potassium channel; G protein-gated potassium channel; ATP-sensitive potassium channel; molecular cloning;
D O I
10.2170/jjphysiol.47.11
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
A variety of cells including cardiac myocytes and neuronal cells possess inwardly rectifying K+ (Kir) channels through which currents flow more readily in the inward direction than outward. These K+ channels play pivotal roles in maintenance of the resting membrane potential, in regulation of the action potential duration, in receptor-dependent inhibition of cellular excitability, and in the secretion and absorption of K+ ions across cell membrane. Recent molecular biological dissection has shown that the DNAs encoding Kir channels constitute a new family of K+ channels whose subunits contain two putative transmembrane domains and a pore-forming region. So far, more than ten cDNAs of Kir channel subunits have been isolated and classified into four subfamilies: 1) IRK subfamily (IRK1-3/Kir1.1-1.3), 2) GIRK subfamily (GIRK1-4/Kir3.1-3.4), 3) ATP-dependent Kir subfamily (ROMK1/Kir1.1, K-AB-2/Kir4.1), and 4) ATP-sensitive Kir subfamily (uK(ATP)-1/Kir6.1, BIR/Kir6.2). Xenopus oocytes injected with the cRNAs of IRKs elicit classical Kir channel currents. GIRKs, as heteromultimers, compose the G protein-gated Kir (K-G) channels, which are regulated by a variety of G(i)/G(0)-coupled inhibitory neurotransmitter receptors such as m(2)-mus-2 carinic, serotonergic (5HT(1A)), GABA(B), somatostatin and opioid (mu, delta, kappa) receptors. ROMK1 and K-AB-2 are characterized with a Walker type-A ATP-binding motif in their carboxyl termini, and may be involved in K+ transport in renal epitheliai and brain glial cells. uK(ATP)-1 and BIR form with sulfonylurea receptors, the so-called ATP-sensitive K+ channels. Thus, it is a feature of the Kir channel family that each subfamily plays a specific physiological functional role. The Na+-activated Kir channels identified electrophysiologically in neurons and cardiac myocytes have not yet been cloned. In this review, we overviewed the current understandings of the features of the molecular structures and functions of the four main subfamilies of Kir channels.
引用
收藏
页码:11 / 39
页数:29
相关论文
共 241 条
[41]   NA+-ACTIVATED K+ CHANNELS AND VOLTAGE-EVOKED IONIC CURRENTS IN BRAIN-STEM AND PARASYMPATHETIC NEURONS OF THE CHICK [J].
DRYER, SE .
JOURNAL OF PHYSIOLOGY-LONDON, 1991, 435 :513-532
[42]   POTASSIUM SELECTIVE ION CHANNELS IN INSULIN-SECRETING CELLS - PHYSIOLOGY, PHARMACOLOGY AND THEIR ROLE IN STIMULUS-SECRETION COUPLING [J].
DUNNE, MJ ;
PETERSEN, OH .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1071 (01) :67-82
[43]   HETEROLOGOUS MULTIMERIC ASSEMBLY IS ESSENTIAL FOR K+ CHANNEL ACTIVITY OF NEURONAL AND CARDIAC G-PROTEIN-ACTIVATED INWARD RECTIFIERS [J].
DUPRAT, F ;
LESAGE, F ;
GUILLEMARE, E ;
FINK, M ;
HUGNOT, JP ;
BIGAY, J ;
LAZDUNSKI, M ;
ROMEY, G ;
BARHANIN, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1995, 212 (02) :657-663
[44]  
EDWARDS G, 1993, ANNU REV PHARMACOL, V33, P597, DOI 10.1146/annurev.pharmtox.33.1.597
[45]   NA+-ACTIVATED K+ CHANNELS ARE WIDELY DISTRIBUTED IN RAT CNS AND IN XENOPUS OOCYTES [J].
EGAN, TM ;
DAGAN, D ;
KUPPER, J ;
LEVITAN, IB .
BRAIN RESEARCH, 1992, 584 (1-2) :319-321
[46]   THE QUANTITATIVE RELATIONSHIP BETWEEN TWITCH TENSION AND INTRACELLULAR SODIUM ACTIVITY IN SHEEP CARDIAC PURKINJE-FIBERS [J].
EISNER, DA ;
LEDERER, WJ ;
VAUGHANJONES, RD .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 355 (OCT) :251-266
[47]   ACTION-POTENTIAL DURATION AND ACTIVATION OF ATP-SENSITIVE POTASSIUM CURRENT IN ISOLATED GUINEA-PIG VENTRICULAR MYOCYTES [J].
FAIVRE, JF ;
FINDLAY, I .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1029 (01) :167-172
[48]   K(IR)2.1 INWARD RECTIFIER K+ CHANNELS ARE REGULATED INDEPENDENTLY BY PROTEIN-KINASES AND ATP HYDROLYSIS [J].
FAKLER, B ;
BRANDLE, U ;
GLOWATZKI, E ;
ZENNER, HP ;
RUPPERSBERG, JP .
NEURON, 1994, 13 (06) :1413-1420
[49]   Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH [J].
Fakler, B ;
Schultz, JH ;
Yang, J ;
Schulte, U ;
Brandle, U ;
Zenner, HP ;
Jan, LY ;
Ruppersberg, JP .
EMBO JOURNAL, 1996, 15 (16) :4093-4099
[50]  
FALKER B, 1994, FEBS LETT, V356, P199