Algebraically special perturbations of the Schwarzschild solution in higher dimensions

被引:12
作者
Dias, Oscar J. C. [1 ]
Reall, Harvey S. [2 ]
机构
[1] CEA Saclay, Inst Phys Theor, CNRS, URA 2306, F-91191 Gif Sur Yvette, France
[2] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England
基金
欧洲研究理事会;
关键词
BLACK-HOLES; GRAVITATIONAL-FIELD; EQUATIONS; METRICS;
D O I
10.1088/0264-9381/30/9/095003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study algebraically special perturbations of a generalized Schwarzschild solution in any number of dimensions. There are two motivations. First, to learn whether there exist interesting higher-dimensional algebraically special solutions beyond the known ones. Second, algebraically special perturbations present an obstruction to the unique reconstruction of general metric perturbations from gauge-invariant variables analogous to the Teukolsky scalars and it is desirable to know the extent of this non-uniqueness. In four dimensions, our results generalize those of Couch and Newman, who found infinite families of time-dependent algebraically special perturbations. In higher dimensions, we find that the only regular algebraically special perturbations are those corresponding to deformations within the Myers-Perry family. Our results are relevant for several inequivalent definitions of 'algebraically special'.
引用
收藏
页数:20
相关论文
共 41 条
[1]  
[Anonymous], 2000, Phys. Rev. D
[2]  
BAIS FA, 1985, NUCL PHYS B, V253, P162, DOI 10.1016/0550-3213(85)90524-3
[3]   Quasinormal modes of Schwarzschild black holes in four and higher dimensions [J].
Cardoso, V ;
Lemos, JPS ;
Yoshida, S .
PHYSICAL REVIEW D, 2004, 69 (04)
[4]  
Cardoso V, 2001, PHYS REV D, V64, DOI 10.1103/PhysRevD.64.084017
[5]  
Carter B., 1968, Communications in Mathematical Physics, V10, P280
[6]   ALGEBRAICALLY SPECIAL PERTURBATIONS OF SCHWARZSCHILD METRIC [J].
COUCH, WE ;
NEWMAN, ET .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (02) :285-286
[7]   The Petrov type of the five-dimensional Myers-Perry metric [J].
De Smet, PJ .
GENERAL RELATIVITY AND GRAVITATION, 2004, 36 (06) :1501-1504
[8]  
De Smet PJ, 2002, CLASSICAL QUANT GRAV, V19, P4877, DOI 10.1088/0264-9381/19/19/307
[9]   Perturbations of higher-dimensional spacetimes [J].
Durkee, Mark ;
Reall, Harvey S. .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (03)
[10]   Generalization of the Geroch-Held-Penrose formalism to higher dimensions [J].
Durkee, Mark ;
Pravda, Vojtech ;
Pravdova, Alena ;
Reall, Harvey S. .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (21)