Perturbations of higher-dimensional spacetimes

被引:30
作者
Durkee, Mark [1 ]
Reall, Harvey S. [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England
关键词
BLACK-HOLES; EQUATIONS; IDENTITIES; TIMES;
D O I
10.1088/0264-9381/28/3/035011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss linearized gravitational perturbations of higher-dimensional spacetimes. For algebraically special spacetimes (e.g. Myers-Perry black holes), we show that there exist local gauge invariant quantities linear in the metric perturbation. These are the higher-dimensional generalizations of the 4D Newman-Penrose scalars that (in an algebraically special vacuum spacetime) satisfy decoupled equations of motion. We show that decoupling occurs in more than four dimensions if, and only if, the spacetime admits a null geodesic congruence with vanishing expansion, rotation and shear. Decoupling of electromagnetic perturbations occurs under the same conditions. Although these conditions are not satisfied in black hole spacetimes, they are satisfied in the near-horizon geometry of an extreme black hole.
引用
收藏
页数:20
相关论文
共 35 条
[1]  
[Anonymous], 2007, ARXIVHEPTH0701238
[2]  
Bardeen J, 1999, PHYS REV D, V60, DOI 10.1103/PhysRevD.60.104030
[3]   Extremal black hole/CFT correspondence in (gauged) supergravities [J].
Chow, David D. K. ;
Cvetic, M. ;
Lue, H. ;
Pope, C. N. .
PHYSICAL REVIEW D, 2009, 79 (08)
[4]   Classification of the Weyl tensor in higher dimensions [J].
Coley, A ;
Milson, R ;
Pravda, V ;
Pravdová, A .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (07) :L35-L41
[5]   Ultraspinning instability of rotating black holes [J].
Dias, Oscar J. C. ;
Figueras, Pau ;
Monteiro, Ricardo ;
Santos, Jorge E. .
PHYSICAL REVIEW D, 2010, 82 (10)
[6]   An instability of higher-dimensional rotating black holes [J].
Dias, Oscar J. C. ;
Figueras, Pau ;
Monteiro, Ricardo ;
Reall, Harvey S. ;
Santos, Jorge E. .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (05)
[7]   Instability and new phases of higher-dimensional rotating black holes [J].
Dias, Oscar J. C. ;
Figueras, Pau ;
Monteiro, Ricardo ;
Santos, Jorge E. ;
Emparan, Roberto .
PHYSICAL REVIEW D, 2009, 80 (11)
[8]   Generalization of the Geroch-Held-Penrose formalism to higher dimensions [J].
Durkee, Mark ;
Pravda, Vojtech ;
Pravdova, Alena ;
Reall, Harvey S. .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (21)
[9]   A higher dimensional generalization of the geodesic part of the Goldberg-Sachs theorem [J].
Durkee, Mark ;
Reall, Harvey S. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (24)
[10]  
DURKEE MN, 2009, ARXIV09082771GRQC