Perturbations of higher-dimensional spacetimes

被引:30
作者
Durkee, Mark [1 ]
Reall, Harvey S. [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England
关键词
BLACK-HOLES; EQUATIONS; IDENTITIES; TIMES;
D O I
10.1088/0264-9381/28/3/035011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss linearized gravitational perturbations of higher-dimensional spacetimes. For algebraically special spacetimes (e.g. Myers-Perry black holes), we show that there exist local gauge invariant quantities linear in the metric perturbation. These are the higher-dimensional generalizations of the 4D Newman-Penrose scalars that (in an algebraically special vacuum spacetime) satisfy decoupled equations of motion. We show that decoupling occurs in more than four dimensions if, and only if, the spacetime admits a null geodesic congruence with vanishing expansion, rotation and shear. Decoupling of electromagnetic perturbations occurs under the same conditions. Although these conditions are not satisfied in black hole spacetimes, they are satisfied in the near-horizon geometry of an extreme black hole.
引用
收藏
页数:20
相关论文
共 35 条
[11]  
DURKEE MN, 2010, ARXIV10124805HEPTH
[12]   Instability of ultra-spinning black holes [J].
Emparan, R ;
Myers, RC .
JOURNAL OF HIGH ENERGY PHYSICS, 2003, (09)
[13]   Black Holes in Higher Dimensions [J].
Emparan, Roberto ;
Reall, Harvey S. .
LIVING REVIEWS IN RELATIVITY, 2008, 11 (1)
[14]   Extremal vacuum black holes in higher dimensions [J].
Figueras, Pau ;
Kunduri, Hari K. ;
Lucietti, James ;
Rangamani, Mukund .
PHYSICAL REVIEW D, 2008, 78 (04)
[15]   Particle and light motion in a space-time of a five-dimensional rotating black hole [J].
Frolov, V ;
Stojkovic, D .
PHYSICAL REVIEW D, 2003, 68 (06)
[16]   SPACE-TIME CALCULUS BASED ON PAIRS OF NULL DIRECTIONS [J].
GEROCH, R ;
HELD, A ;
PENROSE, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :874-881
[17]   Kerr-NUT-de Sitter curvature in all dimensions [J].
Hamamoto, Naoki ;
Houri, Tsuyoshi ;
Oota, Takeshi ;
Yasui, Yukinori .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (07) :F177-F184
[18]   Stability of higher-dimensional Schwarzschild black holes [J].
Ishibashi, A ;
Kodama, H .
PROGRESS OF THEORETICAL PHYSICS, 2003, 110 (05) :901-919
[19]   TYPE D VACUUM METRICS [J].
KINNERSLEY, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (07) :1195-+
[20]   Near-horizon symmetries of extremal black holes [J].
Kunduri, Hari K. ;
Lucietti, James ;
Reall, Harvey S. .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (16) :4169-4189