Echo spectroscopy and atom optics billiards

被引:2
作者
Andersen, M. F. [1 ]
Kaplan, A. [1 ]
Grunzweig, T. [1 ]
Davidson, N. [1 ]
机构
[1] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
关键词
Chaos; Stability; Particle optics; Numerical analysis; Particle traps; Hyperfine structure; Coherence; Photon echo; Energy states; Wave functions; Eigenvalues and eigenfunctions;
D O I
10.1016/S1007-5704(03)00029-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss a recently demonstrated type of microwave spectroscopy of trapped ultra-cold atoms known as "echo spectroscopy'' [Phys. Rev. Lett., 2003; 90: 023001[1]-[4]]. Echo spectroscopy can serve as an extremely sensitive experimental tool for investigating quantum dynamics of trapped atoms even when a large number of states are thermally populated. We show numerical results for the stability of eigenstates of an atom-optics billiard of the Bunimovich type, and discuss its behavior under different types of perturbations. Finally, we propose to use special geometrical constructions to make a dephasing free dipole trap. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:289 / 299
页数:11
相关论文
共 23 条
[1]  
Ali MM, 2017, OPTICAL RESONANCE 2, V95
[2]   Echo spectroscopy and quantum stability of trapped atoms [J].
Andersen, MF ;
Kaplan, A ;
Davidson, N .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[3]   Stable islands in chaotic atom-optics billiards, caused by curved trajectories [J].
Andersen, MF ;
Kaplan, A ;
Friedman, N ;
Davidson, N .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (09) :2183-2190
[4]  
[Anonymous], QUANTPH0010011
[5]   Deformations and dilations of chaotic billiards: Dissipation rate, and quasiorthogonality of the boundary wave functions [J].
Barnett, A ;
Cohen, D ;
Heller, EJ .
PHYSICAL REVIEW LETTERS, 2000, 85 (07) :1412-1415
[6]   Wave packet echoes in the motion of trapped atoms [J].
Buchkremer, FBJ ;
Dumke, R ;
Levsen, H ;
Birkl, G ;
Ertmer, W .
PHYSICAL REVIEW LETTERS, 2000, 85 (15) :3121-3124
[7]   ERGODIC PROPERTIES OF NOWHERE DISPERSING BILLIARDS [J].
BUNIMOVICH, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 65 (03) :295-312
[8]   Unification of perturbation theory, random matrix theory, and semiclassical considerations in the study of parametrically dependent eigenstates [J].
Cohen, D ;
Heller, EJ .
PHYSICAL REVIEW LETTERS, 2000, 84 (13) :2841-2844
[9]   Parametric evolution for a deformed cavity [J].
Cohen, D ;
Barnett, A ;
Heller, EJ .
PHYSICAL REVIEW E, 2001, 63 (04)
[10]  
Cohen-Tannoudji J. D.-R. C., 1992, ATOM PHOTON INTERACT