What is the theoretical density of a nanocrystalline material?

被引:52
作者
Shen, T. D. [1 ]
Zhang, Jianzhong [2 ]
Zhao, Yusheng [2 ]
机构
[1] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87545 USA
关键词
nanocrystalline; theoretical density; excess volume; dislocation density; grain size;
D O I
10.1016/j.actamat.2008.04.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We prepared nanocrystalline Ni by a severe deformation method - high-energy ball milling - and collected neutron diffraction patterns during the annealing of nanocrystalline Ni. Analyzing the neutron diffraction patterns provides the lattice parameter, dislocation density and grain size of nanocrystalline Ni. We found that a low-temperature (T < 260 degrees C) anneal annihilates the statistically stored dislocations whereas a high-temperature (T > 260 degrees C) anneal grows the nanograins. For T < 260 degrees C. where nanocrystalline Ni has a constant grain size, the excess volume is proportional to the density of statistically stored dislocations. For T > 260 degrees C, where the statistically stored dislocations are completely annealed out, the excess volume is inversely proportional to the grain size. However, 80% of the excess volume in our severely deformed nanocrystalline Ni is due to the statistically stored dislocations. We finally used our experimental data to derive the grain size dependence of the theoretical density of a nanocrystalline material free from excess dislocations. The derived theoretical density agrees well with the experimentally measured density of nanocrystalline metallic materials that are relatively free from deformation-induced defects. Published by Elsevier Ltd on behalf of Acta Materialia Inc.
引用
收藏
页码:3663 / 3671
页数:9
相关论文
共 64 条
[51]  
Smithells C. J., 1976, METALS REFERENCE BOO, P975
[52]   VARIATION IN LATTICE-PARAMETERS WITH GRAIN-SIZE OF A NANOPHASE NI3P COMPOUND [J].
SUI, ML ;
LU, K .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1994, 179 :541-544
[53]   The contrast factors of dislocations in cubic crystals:: the dislocation model of strain anisotropy in practice [J].
Ungár, T ;
Dragomir, I ;
Révész, A ;
Borbély, A .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1999, 32 :992-1002
[54]  
Ungár T, 1999, PHYS STATUS SOLIDI A, V171, P425, DOI 10.1002/(SICI)1521-396X(199902)171:2<425::AID-PSSA425>3.0.CO
[55]  
2-W
[56]  
Vassen R, 2001, MAT SCI ENG A-STRUCT, V301, P59, DOI 10.1016/S0921-5093(00)01389-7
[57]   A THERMODYNAMIC CRITERION OF THE CRYSTALLINE-TO-AMORPHOUS TRANSITION IN SILICON [J].
VEPREK, S ;
IQBAL, Z ;
SAROTT, FA .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1982, 45 (01) :137-145
[58]   Lattice expansion of Ni nanopowders [J].
Wei, Zhi-Qiang ;
Xia, Tian-Dong ;
Wang, Jun ;
Wu, Zhi-Guo ;
Yan, Peng-Xu .
ACTA PHYSICA SINICA, 2007, 56 (02) :1004-1008
[59]   CORRELATION BETWEEN ENERGY AND VOLUME EXPANSION FOR GRAIN-BOUNDARIES IN FCC METALS [J].
WOLF, D .
SCRIPTA METALLURGICA, 1989, 23 (11) :1913-1918
[60]   Structure and interfacial properties of nanocrystalline aluminum/mullite composites [J].
Zhang, HY ;
Maljkovic, N ;
Mitchell, BS .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 326 (02) :317-323