Recurrence time statistics for chaotic systems and their applications

被引:142
作者
Gao, JB [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
关键词
D O I
10.1103/PhysRevLett.83.3178
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By studying recurrence time statistics for chaotic systems, we identify two different types of recurrences and develop scaling laws relating the mean recurrence time to the information dimension of the chaotic attractor. We then design two novel and simple ways of using the recurrence time statistics for analyzing transient as well as nonstationary time series. We show that the methods are capable of detecting nonstationarity due to drift of parameters, locating bifurcations, telling the periodicity of major transient periodic motions, and other types of changes in the dynamics.
引用
收藏
页码:3178 / 3181
页数:4
相关论文
共 19 条
[1]   Recurrence time statistics in chaotic dynamics .1. Discrete time maps [J].
Balakrishnan, V ;
Nicolis, G ;
Nicolis, C .
JOURNAL OF STATISTICAL PHYSICS, 1997, 86 (1-2) :191-212
[2]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[3]   RECURRENCE PLOTS OF DYNAMIC-SYSTEMS [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D .
EUROPHYSICS LETTERS, 1987, 4 (09) :973-977
[4]   THE DIMENSION OF CHAOTIC ATTRACTORS [J].
FARMER, JD ;
OTT, E ;
YORKE, JA .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 7 (1-3) :153-180
[5]   DIRECT DYNAMICAL TEST FOR DETERMINISTIC CHAOS AND OPTIMAL EMBEDDING OF A CHAOTIC TIME-SERIES [J].
GAO, JB ;
ZHENG, ZM .
PHYSICAL REVIEW E, 1994, 49 (05) :3807-3814
[6]   CHARACTERIZATION OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1983, 50 (05) :346-349
[7]   2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR [J].
HENON, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :69-77
[8]  
Kac M., 1959, PROBABILITY RELATED
[9]   Statistical test for dynamical nonstationarity in observed time-series data [J].
Kennel, MB .
PHYSICAL REVIEW E, 1997, 56 (01) :316-321
[10]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO