ProMate: A structure based prediction program to identify the location of protein-protein binding sites

被引:343
作者
Neuvirth, H
Raz, R
Schreiber, G [1 ]
机构
[1] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel
[2] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
关键词
bioinformatics; protein-protein interactions; transient hetero-complexes; binding-site prediction;
D O I
10.1016/j.jmb.2004.02.040
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Is the whole protein surface available for interaction with other proteins, or are specific sites pre-assigned according to their biophysical and structural character? And if so, is it possible to predict the location of the binding site from the surface properties? These questions are answered quantitatively by probing the surfaces of proteins using spheres of radius of 10 Angstrom on a database (DB) of 57 unique, non-homologous proteins involved in heteromeric, transient protein-protein interactions for which the structures of both the unbound and bound states were determined. In structural terms, we found the binding site to have a preference for beta-sheets and for relatively long non-structured chains, but not for alpha-helices. Chemically, aromatic side-chains show a clear preference for binding sites. While the hydrophobic and polar content of the interface is similar to the rest of the surface, hydrophobic and polar residues tend to cluster in interfaces. In the crystal, the binding site has more bound water molecules surrounding it, and a lower B-factor already in the unbound protein. The same biophysical properties were found to hold for the unbound and bound DBs. All the significant interface properties were combined into ProMate, an interface prediction program. This was followed by an optimization step to choose the best combination of properties, as many of them are correlated. During optimization and prediction, the tested proteins were not used for data collection, to avoid over-fitting. The prediction algorithm is fully automated, and is used to predict the location of potential binding sites on unbound proteins with known structures. The algorithm is able to successfully predict the location of the interface for about 70% of the proteins. The success rate of the predictor was equal whether applied on the unbound DB or on the disjoint bound DB. A prediction is assumed correct if over half of the predicted continuous interface patch is indeed interface. The ability to predict the location of protein-protein interfaces has far reaching implications both towards our understanding of specificity and kinetics of binding, as well as in assisting in the analysis of the proteome. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:181 / 199
页数:19
相关论文
共 34 条
[1]   Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges [J].
Albeck, S ;
Unger, R ;
Schreiber, G .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 298 (03) :503-520
[2]   Automated structure-based prediction of functional sites in proteins: Applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking [J].
Aloy, P ;
Querol, E ;
Aviles, FX ;
Sternberg, MJE .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 311 (02) :395-408
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]   AN INVESTIGATION OF PROTEIN SUBUNIT AND DOMAIN INTERFACES [J].
ARGOS, P .
PROTEIN ENGINEERING, 1988, 2 (02) :101-113
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   Predicting properties of intrinsically unstructured proteins [J].
Bright, JN ;
Woolf, TB ;
Hoh, JH .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2001, 76 (03) :131-173
[7]  
CONNOLLY ML, 1986, J MOL GRAPHICS, V4, P3
[8]   Convergent solutions to binding at a protein-protein interface [J].
DeLano, WL ;
Ultsch, MH ;
de Vos, AM ;
Wells, JA .
SCIENCE, 2000, 287 (5456) :1279-1283
[9]  
Efron B., 1982, SOC IND APPL MATH CB, V38, DOI [10.1137/1.9781611970319, DOI 10.1137/1.9781611970319]
[10]   Prediction of protein-protein interaction sites in heterocomplexes with neural networks [J].
Fariselli, P ;
Pazos, F ;
Valencia, A ;
Casadio, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (05) :1356-1361