A practical method to target individuals for outbreak detection and control

被引:8
作者
Chowell, Gerardo [1 ,2 ]
Viboud, Cecile [2 ]
机构
[1] Arizona State Univ, Sch Human Evolut & Social Change, Math & Computat Modeling Sci Ctr, Tempe, AZ 85069 USA
[2] NIH, Fogarty Int Ctr, Div Int Epidemiol & Populat Studies, Bethesda, MD 20892 USA
来源
BMC MEDICINE | 2013年 / 11卷
关键词
contact network; hotspot; dynamic network; contact pattern; wireless sensing devices; collocation ranking; class schedule; high school; influenza; disease transmission; INFECTIOUS-DISEASE; SOCIAL NETWORKS; TRANSMISSION; CLOSURE;
D O I
10.1186/1741-7015-11-36
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Identification of individuals or subpopulations that contribute the most to disease transmission is key to target surveillance and control efforts. In a recent study in BMC Medicine, Smieszek and Salathe introduced a novel method based on readily available information about spatial proximity in high schools, to help identify individuals at higher risk of infection and those more likely to be infected early in the outbreak. By combining simulation models for influenza transmission with high-resolution data on school contact patterns, the authors showed that their proximity method compares favorably to more sophisticated methods using detailed contact tracing information. The proximity method is simple and promising, but further research is warranted to confront this method against real influenza outbreak data, and to assess the generalizability of the approach to other important transmission units, such as work, households, and transportation systems. See related research article here http://www.biomedcentral.com/1741-7015/11/35
引用
收藏
页数:3
相关论文
共 18 条
[1]  
ANDERSON R M, 1991
[2]   The importance of including dynamic social networks when modeling epidemics of airborne infections: does increasing complexity increase accuracy? [J].
Blower, Sally ;
Go, Myong-Hyun .
BMC MEDICINE, 2011, 9
[3]   Information Technology and Global Surveillance of Cases of 2009 H1N1 Influenza. [J].
Brownstein, John S. ;
Freifeld, Clark C. ;
Chan, Emily H. ;
Keller, Mikaela ;
Sonricker, Amy L. ;
Mekaru, Sumiko R. ;
Buckeridge, David L. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 362 (18) :1731-1735
[4]   Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks [J].
Cattuto, Ciro ;
Van den Broeck, Wouter ;
Barrat, Alain ;
Colizza, Vittoria ;
Pinton, Jean-Francois ;
Vespignani, Alessandro .
PLOS ONE, 2010, 5 (07)
[5]   Estimating the impact of school closure on influenza transmission from Sentinel data [J].
Cauchemez, Simon ;
Valleron, Alain-Jacques ;
Boelle, Pierre-Yves ;
Flahault, Antoine ;
Ferguson, Neil M. .
NATURE, 2008, 452 (7188) :750-U6
[6]   Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza [J].
Cauchemez, Simon ;
Bhattarai, Achuyt ;
Marchbanks, Tiffany L. ;
Fagan, Ryan P. ;
Ostroff, Stephen ;
Ferguson, Neil M. ;
Swerdlow, David .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (07) :2825-2830
[7]   Closure of schools during an influenza pandemic [J].
Cauchemez, Simon ;
Ferguson, Neil M. ;
Wachtel, Claude ;
Tegnell, Anders ;
Saour, Guillaume ;
Duncan, Ben ;
Nicoll, Angus .
LANCET INFECTIOUS DISEASES, 2009, 9 (08) :473-481
[8]   Modeling rapidly disseminating infectious disease during mass gatherings [J].
Chowell, Gerardo ;
Nishiura, Hiroshi ;
Viboud, Cecile .
BMC MEDICINE, 2012, 10
[9]   Influenza Virus in Human Exhaled Breath: An Observational Study [J].
Fabian, Patricia ;
McDevitt, James J. ;
DeHaan, Wesley H. ;
Fung, Rita O. P. ;
Cowling, Benjamin J. ;
Chan, Kwok Hung ;
Leung, Gabriel M. ;
Milton, Donald K. .
PLOS ONE, 2008, 3 (07)
[10]   Strategies for containing an emerging influenza pandemic in Southeast Asia [J].
Ferguson, NM ;
Cummings, DAT ;
Cauchemez, S ;
Fraser, C ;
Riley, S ;
Meeyai, A ;
Iamsirithaworn, S ;
Burke, DS .
NATURE, 2005, 437 (7056) :209-214