MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings

被引:700
作者
McVey, Mitch [1 ,2 ]
Lee, Sang Eun [3 ]
机构
[1] Tufts Univ, Sackler Sch Grad Biomed Sci, Genet Program, Boston, MA 02111 USA
[2] Tufts Univ, Dept Biol, Medford, MA 02155 USA
[3] Univ Texas Hlth Sci Ctr San Antonio, Inst Biotechnol, Dept Mol Med, San Antonio, TX 78245 USA
关键词
D O I
10.1016/j.tig.2008.08.007
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
DNA double-strand breaks are normal consequences of cell division and differentiation and must be repaired faithfully to maintain genome stability. Two mechanistically distinct pathways are known to efficiently repair double-strand breaks: homologous recombination and Ku-dependent non-homologous end joining. Recently, a third, less characterized repair mechanism, named microhomology-mediated end joining (MMEJ), has received increasing attention. MMEJ repairs DNA breaks via the use of substantial microhomology and always results in deletions. Furthermore, it probably contributes to oncogenic chromosome rearrangements and genetic variation in humans. Here, we summarize the genetic attributes of MMEJ from several model systems and discuss the relationship between MMEJ and 'alternative end joining'. We propose a mechanistic model for MMEJ and highlight important questions for future research.
引用
收藏
页码:529 / 538
页数:10
相关论文
共 88 条
[1]   ERCC1-XPF endonuclease facilitates DNA double-strand break repair [J].
Ahmad, Anwaar ;
Robinson, Andria Rasile ;
Duensing, Anette ;
van Drunen, Ellen ;
Beverloo, H. Berna ;
Weisberg, David B. ;
Hasty, Paul ;
Hoeijmakers, Jan H. J. ;
Niedernhofer, Laura J. .
MOLECULAR AND CELLULAR BIOLOGY, 2008, 28 (16) :5082-5092
[2]   Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining [J].
Audebert, M ;
Salles, B ;
Calsou, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (53) :55117-55126
[3]   Effect of double-strand break DNA sequence on the PARP-1 NHEJ pathway [J].
Audebert, Marc ;
Salles, Bernard ;
Calsou, Patrick .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 369 (03) :982-988
[4]   The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle [J].
Aylon, Y ;
Liefshitz, B ;
Kupiec, M .
EMBO JOURNAL, 2004, 23 (24) :4868-4875
[5]   Drosophila P-element transposase is a novel site-specific endonuclease [J].
Beall, EL ;
Rio, DC .
GENES & DEVELOPMENT, 1997, 11 (16) :2137-2151
[6]   Alternative-NHEJ Is a Mechanistically Distinct Pathway of Mammalian Chromosome Break Repair [J].
Bennardo, Nicole ;
Cheng, Anita ;
Huang, Nick ;
Stark, Jeremy M. .
PLOS GENETICS, 2008, 4 (06)
[7]   DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining [J].
Bentley, J ;
Diggle, CP ;
Harnden, P ;
Knowles, MA ;
Kiltie, AE .
NUCLEIC ACIDS RESEARCH, 2004, 32 (17) :5249-5259
[8]   V(D)J recombination in Ku86-deficient mice: Distinct effects on coding, signal, and hybrid joint formation [J].
Bogue, MA ;
Wang, CY ;
Zhu, CM ;
Roth, DB .
IMMUNITY, 1997, 7 (01) :37-47
[9]   Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double strand break rejoining and in telomeric maintenance [J].
Boulton, SJ ;
Jackson, SP .
NUCLEIC ACIDS RESEARCH, 1996, 24 (23) :4639-4648
[10]   AN INTERACTION BETWEEN THE MAMMALIAN DNA-REPAIR PROTEIN XRCC1 AND DNA LIGASE-III [J].
CALDECOTT, KW ;
MCKEOWN, CK ;
TUCKER, JD ;
LJUNGQUIST, S ;
THOMPSON, LH .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (01) :68-76