Alternative-NHEJ Is a Mechanistically Distinct Pathway of Mammalian Chromosome Break Repair

被引:681
作者
Bennardo, Nicole [1 ,2 ]
Cheng, Anita [1 ]
Huang, Nick [1 ]
Stark, Jeremy M. [1 ,2 ]
机构
[1] Beckman Res Inst City Hope, Dept Radiat Biol, Duarte, CA USA
[2] City Hope Grad Sch Biol Sci, Duarte, CA USA
基金
美国国家卫生研究院;
关键词
D O I
10.1371/journal.pgen.1000110
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Characterizing the functional overlap and mutagenic potential of different pathways of chromosomal double-strand break (DSB) repair is important to understand how mutations arise during cancer development and treatment. To this end, we have compared the role of individual factors in three different pathways of mammalian DSB repair: alternative-nonhomologous end joining (alt-NHEJ), single-strand annealing (SSA), and homology directed repair (HDR/GC). Considering early steps of repair, we found that the DSB end-processing factors KU and CtIP affect all three pathways similarly, in that repair is suppressed by KU and promoted by CtIP. In contrast, both KU and CtIP appear dispensable for the absolute level of total-NHEJ between two tandem I-Scel-induced DSBs. During later steps of repair, we find that while the annealing and processing factors RAD52 and ERCC1 are important to promote SSA, both HDR/GC and alt-NHEJ are significantly less dependent upon these factors. As well, while disruption of RAD51 causes a decrease in HDR/GC and an increase in SSA, inhibition of this factor did not affect alt-NHEJ. These results suggest that the regulation of DSB end-processing via KU/CtIP is a common step during alt-NHEJ, SSA, and HDR/GC. However, at later steps of repair, alt-NHEJ is a mechanistically distinct pathway of DSB repair, and thus may play a unique role in mutagenesis during cancer development and therapy.
引用
收藏
页数:10
相关论文
共 50 条
[1]   The cellular response to general and programmed DNA double strand breaks [J].
Bassing, CH ;
Alt, FW .
DNA REPAIR, 2004, 3 (8-9) :781-796
[2]   Role of non-homologous end joining (NHEJ) in maintaining genomic integrity [J].
Burma, Sandeep ;
Chen, Benjamin P. C. ;
Chen, David J. .
DNA REPAIR, 2006, 5 (9-10) :1042-1048
[3]   Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair [J].
Chen, Longchuan ;
Nievera, Christian J. ;
Lee, Alan Yueh-Luen ;
Wu, Xiaohua .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (12) :7713-7720
[4]   Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function [J].
Chi, P ;
Van Komen, S ;
Sehorn, MG ;
Sigurdsson, S ;
Sung, P .
DNA REPAIR, 2006, 5 (03) :381-391
[5]   Rag mutations reveal robust alternative end joining [J].
Corneo, Barbara ;
Wendland, Rebecca L. ;
Deriano, Ludovic ;
Cui, Xiaoping ;
Klein, Isaac A. ;
Wong, Serre-Yu ;
Arnal, Suzzette ;
Holub, Abigail J. ;
Weller, Geoffrey R. ;
Pancake, Bette A. ;
Shah, Sundeep ;
Brandt, Vicky L. ;
Meek, Katheryn ;
Roth, David B. .
NATURE, 2007, 449 (7161) :483-U10
[6]   Rejoining of DNA double-strand breaks as a function of overhang length [J].
Daley, JM ;
Wilson, TE .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (03) :896-906
[7]   Role of BRCA2 in control of the RAD51 recombination and DNA repair protein [J].
Davies, AA ;
Masson, JY ;
Mcllwraith, MJ ;
Stasiak, AZ ;
Stasiak, A ;
Venkitaraman, AR ;
West, SC .
MOLECULAR CELL, 2001, 7 (02) :273-282
[8]   Molecular mechanism of nucleotide excision repair [J].
de Laat, WL ;
Jaspers, NGJ ;
Hoeijmakers, JHJ .
GENES & DEVELOPMENT, 1999, 13 (07) :768-785
[9]   Microhomology-mediated end joining in fission yeast is repressed by Pku70 and relies on genes involved in homologous recombination [J].
Decottignies, Anabelle .
GENETICS, 2007, 176 (03) :1403-1415
[10]   A means to a DNA end: The many roles of Ku [J].
Downs, JA ;
Jackson, SP .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2004, 5 (05) :367-378