Hierarchical Regression for Analyses of Multiple Outcomes
被引:66
作者:
Richardson, David B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USAUniv N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USA
Richardson, David B.
[1
]
Hamra, Ghassan B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USAUniv N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USA
Hamra, Ghassan B.
[1
]
MacLehose, Richard F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USAUniv N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USA
MacLehose, Richard F.
[1
]
Cole, Stephen R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USAUniv N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USA
Cole, Stephen R.
[1
]
Chu, Haitao
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USAUniv N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USA
Chu, Haitao
[1
]
机构:
[1] Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USA
In cohort mortality studies, there often is interest in associations between an exposure of primary interest and mortality due to a range of different causes. A standard approach to such analyses involves fitting a separate regression model for each type of outcome. However, the statistical precision of some estimated associations may be poor because of sparse data. In this paper, we describe a hierarchical regression model for estimation of parameters describing outcome-specific relative rate functions and associated credible intervals. The proposed model uses background stratification to provide flexible control for the outcome-specific associations of potential confounders, and it employs a hierarchical "shrinkage" approach to stabilize estimates of an exposure's associations with mortality due to different causes of death. The approach is illustrated in analyses of cancer mortality in 2 cohorts: a cohort of dioxin-exposed US chemical workers and a cohort of radiation-exposed Japanese atomic bomb survivors. Compared with standard regression estimates of associations, hierarchical regression yielded estimates with improved precision that tended to have less extreme values. The hierarchical regression approach also allowed the fitting of models with effect-measure modification. The proposed hierarchical approach can yield estimates of association that are more precise than conventional estimates when one wishes to estimate associations with multiple outcomes.
引用
收藏
页码:459 / 467
页数:9
相关论文
共 32 条
[11]
Lubin JH, 2000, AM J EPIDEMIOL, V151, P554, DOI 10.1093/oxfordjournals.aje.a010243
机构:
Univ N Carolina, Sch Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USAUniv N Carolina, Sch Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USA
Richardson, David B.
;
Langholz, Bryan
论文数: 0引用数: 0
h-index: 0
机构:
Univ So Calif, Keck Sch Med, Dept Prevent Med, Div Biostat, Los Angeles, CA 90089 USAUniv N Carolina, Sch Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USA
机构:
Univ N Carolina, Sch Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USAUniv N Carolina, Sch Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USA
Richardson, David B.
;
Langholz, Bryan
论文数: 0引用数: 0
h-index: 0
机构:
Univ So Calif, Keck Sch Med, Dept Prevent Med, Div Biostat, Los Angeles, CA 90089 USAUniv N Carolina, Sch Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USA