Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations

被引:8
作者
Bacaër, N [1 ]
机构
[1] Univ Paris 06, Anal Numer Lab, F-75013 Paris, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2001年 / 35卷 / 06期
关键词
min-plus eigenvalue problems; numerical analysis; Frenkel-Kontorova model; Hamilton-Jacobi equations;
D O I
10.1051/m2an:2001153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations is emphasized.
引用
收藏
页码:1185 / 1195
页数:11
相关论文
共 15 条
[1]  
Aubry S., 1978, Solitons and Condensed Matter Physics, P264
[2]   THE TWIST MAP, THE EXTENDED FRENKEL-KONTOROVA MODEL AND THE DEVILS STAIRCASE [J].
AUBRY, S .
PHYSICA D, 1983, 7 (1-3) :240-258
[3]  
BACAER N, 2001, UNPUB P WORKSH MAX P
[4]  
Baccelli F, 1992, SYNCHRONIZATION LINE
[5]   AN ADDITIVE EIGENVALUE PROBLEM OF PHYSICS RELATED TO LINEAR-PROGRAMMING [J].
CHOU, W ;
DUFFIN, RJ .
ADVANCES IN APPLIED MATHEMATICS, 1987, 8 (04) :486-498
[6]   GROUND-STATES OF ONE-DIMENSIONAL SYSTEMS USING EFFECTIVE POTENTIALS [J].
CHOU, WR ;
GRIFFITHS, RB .
PHYSICAL REVIEW B, 1986, 34 (09) :6219-6234
[7]  
COCHETTERRASSON J, NUMERICAL COMPUTATIO
[8]  
Concordel MC, 1996, INDIANA U MATH J, V45, P1095
[9]   ENDOMORPHISMS OF SEMIMODULES OVER SEMIRINGS WITH AN IDEMPOTENT OPERATION [J].
DUDNIKOV, PI ;
SAMBORSKII, SN .
MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (01) :91-105
[10]   Effective Hamiltonians and averaging for Hamiltonian dynamics I [J].
Evans, LC ;
Gomes, D .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 157 (01) :1-33