Harmonic coordinate method for simulating generic singularities

被引:137
作者
Garfinkle, D [1 ]
机构
[1] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
关键词
D O I
10.1103/PhysRevD.65.044029
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper presents both a numerical method for general relativity and an application of that method. The method involves the use of harmonic coordinates in a 3+1 code to evolve the Einstein equations with scalar field matter. In such coordinates, the terms in Einstein's equations with the highest number of derivatives take a form similar to that of the wave equation. The application is an exploration of the generic approach to the singularity for this type of matter. The preliminary results indicate that the dynamics as one approaches the singularity is locally the dynamics of the Kasner spacetimes.
引用
收藏
页数:6
相关论文
共 25 条
[11]   The singularity in generic gravitational collapse is spacelike, local and oscillatory [J].
Berger, BK ;
Garfinkle, D ;
Isenberg, J ;
Moncrief, V ;
Weaver, M .
MODERN PHYSICS LETTERS A, 1998, 13 (19) :1565-1573
[12]   Oscillatory approach to the singularity in vacuum spacetimes with T2 isometry -: art. no. 084006 [J].
Berger, BK ;
Isenberg, J ;
Weaver, M .
PHYSICAL REVIEW D, 2001, 64 (08)
[13]   Phenomenology of the Gowdy universe on T3 x R [J].
Berger, BK ;
Garfinkle, D .
PHYSICAL REVIEW D, 1998, 57 (08) :4767-4777
[14]   HYPERBOLIC EVOLUTION SYSTEM FOR NUMERICAL RELATIVITY [J].
BONA, C ;
MASSO, J .
PHYSICAL REVIEW LETTERS, 1992, 68 (08) :1097-1099
[15]   EINSTEIN EVOLUTION-EQUATIONS AS A SYSTEM OF BALANCE LAWS [J].
BONA, C ;
MASSO, J .
PHYSICAL REVIEW D, 1989, 40 (04) :1022-1026
[16]   HARMONIC SYNCHRONIZATIONS OF SPACETIME [J].
BONA, C ;
MASSO, J .
PHYSICAL REVIEW D, 1988, 38 (08) :2419-2422
[17]  
CHOPTUIK MW, 1994, NATO ADV SCI INST SE, V332, P155
[18]   *THEOREME DEXISTENCE POUR CERTAINS SYSTEMES DEQUATIONS AUX DERIVEES PARTIELLES NON LINEAIRES [J].
FOURESBRUHAT, Y .
ACTA MATHEMATICA, 1952, 88 (03) :141-225
[19]   The initial boundary value problem for Einstein's vacuum field equation [J].
Friedrich, H ;
Nagy, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) :619-655
[20]  
NAKAMURA T, 1987, PROG THEOR PHYS SUPP, P1, DOI 10.1143/PTPS.90.1