Exact result on topology and phase transitions at any finite N -: art. no. 036112

被引:29
作者
Casetti, L
Cohen, EGD
Pettini, M
机构
[1] UdR Firenze, INFM, I-50125 Florence, Italy
[2] Rockefeller Univ, New York, NY 10021 USA
[3] Osserv Astrofis Arcetri, I-50125 Florence, Italy
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 03期
关键词
D O I
10.1103/PhysRevE.65.036112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study analytically the topology of a family of submanifolds of the configuration space of the mean-field XY model, computing also a topological invariant (the Euler characteristic). We prove that a particular topological change of these submanifolds is connected to the phase transition of this system, and exists also at finite N. The present result is the first analytic proof that a phase transition has a topological origin and provides a key to a possible better understanding of the origin of phase transitions at their deepest level, as well as to a possible definition of phase transitions at finite N.
引用
收藏
页数:4
相关论文
共 19 条
[1]   Saddles in the energy landscape probed by supercooled liquids [J].
Angelani, L ;
Di Leonardo, R ;
Ruocco, G ;
Scala, A ;
Sciortino, F .
PHYSICAL REVIEW LETTERS, 2000, 85 (25) :5356-5359
[2]  
[Anonymous], 1969, STAT MECH
[3]   CLUSTERING AND RELAXATION IN HAMILTONIAN LONG-RANGE DYNAMICS [J].
ANTONI, M ;
RUFFO, S .
PHYSICAL REVIEW E, 1995, 52 (03) :2361-2374
[4]   Geometry of dynamics, Lyapunov exponents, and phase transitions [J].
Caiani, L ;
Casetti, L ;
Clementi, C ;
Pettini, M .
PHYSICAL REVIEW LETTERS, 1997, 79 (22) :4361-4364
[5]   Topological origin of the phase transition in a mean-field model [J].
Casetti, L ;
Cohen, EGD ;
Pettini, M .
PHYSICAL REVIEW LETTERS, 1999, 82 (21) :4160-4163
[6]   Geometric approach to Hamiltonian dynamics and statistical mechanics [J].
Casetti, L ;
Pettini, M ;
Cohen, EGD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 337 (03) :237-341
[7]   Role of saddles in mean-field dynamics above the glass transition [J].
Cavagna, A ;
Giardina, I ;
Parisi, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (26) :5317-5326
[8]   Hamiltonian dynamics and geometry of phase transitions in classical XY models [J].
Cerruti-Sola, M ;
Clementi, C ;
Pettini, M .
PHYSICAL REVIEW E, 2000, 61 (05) :5171-5190
[9]   UHLENBECK,GEORGE,E. AND STATISTICAL-MECHANICS [J].
COHEN, EGD .
AMERICAN JOURNAL OF PHYSICS, 1990, 58 (07) :619-625
[10]  
DEALMEIDA RMC, CONDMAT0003351