Geometry of dynamics, Lyapunov exponents, and phase transitions

被引:118
作者
Caiani, L
Casetti, L
Clementi, C
Pettini, M
机构
[1] SCUOLA NORMALE SUPER PISA, I-56126 PISA, ITALY
[2] OSSERV ASTROFIS ARCETRI, I-50125 FLORENCE, ITALY
关键词
D O I
10.1103/PhysRevLett.79.4361
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Hamiltonian dynamics of the classical planar Heisenberg model is numerically investigated in two and three dimensions. In three dimensions peculiar behaviors are found in the temperature dependence of the largest Lyapunov exponent and of other observables related to the geometrization of the dynamics. On the basis of a heuristic argument it is conjectured that the phase transition might correspond to a change in the topology of the manifolds whose geodesics are the motions of the system.
引用
收藏
页码:4361 / 4364
页数:4
相关论文
共 29 条
  • [1] ABRAHAM R, 1987, F MECHANICS
  • [2] CLUSTERING AND RELAXATION IN HAMILTONIAN LONG-RANGE DYNAMICS
    ANTONI, M
    RUFFO, S
    [J]. PHYSICAL REVIEW E, 1995, 52 (03): : 2361 - 2374
  • [3] Arnold V. I., 1978, Mathematical methods of classical mechanics
  • [4] KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS
    BENETTIN, G
    GALGANI, L
    STRELCYN, JM
    [J]. PHYSICAL REVIEW A, 1976, 14 (06): : 2338 - 2345
  • [5] UNIVERSAL BEHAVIOR OF LYAPUNOV EXPONENTS IN UNSTABLE SYSTEMS
    BONASERA, A
    LATORA, V
    RAPISARDA, A
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (19) : 3434 - 3437
  • [6] PHASE-TRANSITIONS AND LYAPUNOV CHARACTERISTIC EXPONENTS
    BUTERA, P
    CARAVATI, G
    [J]. PHYSICAL REVIEW A, 1987, 36 (02): : 962 - 964
  • [7] ANALYTIC COMPUTATION OF THE STRONG STOCHASTICITY THRESHOLD IN HAMILTONIAN-DYNAMICS USING RIEMANNIAN GEOMETRY
    CASETTI, L
    PETTINI, M
    [J]. PHYSICAL REVIEW E, 1993, 48 (06): : 4320 - 4332
  • [8] EFFICIENT SYMPLECTIC ALGORITHMS FOR NUMERICAL SIMULATIONS OF HAMILTONIAN FLOWS
    CASETTI, L
    [J]. PHYSICA SCRIPTA, 1995, 51 (01) : 29 - 34
  • [9] Riemannian theory of Hamiltonian chaos and Lyapunov exponents
    Casetti, L
    Clementi, C
    Pettini, M
    [J]. PHYSICAL REVIEW E, 1996, 54 (06): : 5969 - 5984
  • [10] GAUSSIAN MODEL FOR CHAOTIC INSTABILITY OF HAMILTONIAN FLOWS
    CASETTI, L
    LIVI, R
    PETTINI, M
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (03) : 375 - 378