Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions

被引:258
作者
Berti, E [1 ]
Cardoso, V
Casals, M
机构
[1] Washington Univ, Dept Phys, McDonnell Ctr Space Sci Sci, St Louis, MO 63130 USA
[2] Univ Mississippi, Dept Phys & Astron, University, MS 38677 USA
[3] Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
[4] Univ Coimbra, Ctr Fis COmputac, P-3004516 Coimbra, Portugal
来源
PHYSICAL REVIEW D | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevD.73.024013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Spin-weighted spheroidal harmonics are useful in a variety of physical situations, including light scattering, nuclear modeling, signal processing, electromagnetic wave propagation, black hole perturbation theory in four and higher dimensions, quantum field theory in curved space-time and studies of D-branes. We first review analytic and numerical calculations of their eigenvalues, and eigenfunctions in four dimensions, filling gaps in the existing literature when necessary. Then we compute the angular dependence of the spin-weighted spheroidal harmonics corresponding to slowly damped quasinormal mode frequencies of the Kerr black hole, providing numerical tables and approximate formulas for their scalar products. Finally we present an exhaustive analytic and numerical study of scalar spheroidal harmonics in (n+4) dimensions.
引用
收藏
页数:22
相关论文
共 81 条
[51]   Calculable corrections to brane black hole decay: The scalar case [J].
Kanti, P ;
March-Russell, J .
PHYSICAL REVIEW D, 2002, 66 (02)
[52]   Quasi-normal modes of stars and black holes [J].
Kokkotas K.D. ;
Schmidt B.G. .
Living Reviews in Relativity, 1999, 2 (1)
[53]   On prolate spheroidal wave functions for signal processing [J].
Larsson, B ;
Levitina, T ;
Brändas, EJ .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2001, 85 (4-5) :392-397
[54]   SOLUTIONS TO A GENERALIZED SPHEROIDAL WAVE-EQUATION - TEUKOLSKY EQUATIONS IN GENERAL-RELATIVITY, AND THE 2-CENTER PROBLEM IN MOLECULAR QUANTUM-MECHANICS [J].
LEAVER, EW .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1238-1265
[55]   AN ANALYTIC REPRESENTATION FOR THE QUASI-NORMAL MODES OF KERR BLACK-HOLES [J].
LEAVER, EW .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 402 (1823) :285-298
[56]   SPECTRAL DECOMPOSITION OF THE PERTURBATION RESPONSE OF THE SCHWARZSCHILD GEOMETRY [J].
LEAVER, EW .
PHYSICAL REVIEW D, 1986, 34 (02) :384-408
[57]   Computations of spheroidal harmonics with complex arguments: A review with an algorithm [J].
Li, LW ;
Leong, MS ;
Yeo, TS ;
Kooi, PS ;
Tan, KY .
PHYSICAL REVIEW E, 1998, 58 (05) :6792-6806
[58]  
MEIXNER J, 1954, MATH FUNKTIONEN SPHA
[59]  
Mishchenko M. I., 2000, LIGHT SCATTERING NON
[60]  
Motl L., 2002, ADV THEOR MATH PHYS, V6, P1135