Studies on the cycle life of commercial lithium ion batteries during rapid charge-discharge cycling

被引:203
作者
Li, J [1 ]
Murphy, E [1 ]
Winnick, J [1 ]
Kohl, PA [1 ]
机构
[1] Georgia Inst Technol, Sch Chem Engn, Atlanta, GA 30332 USA
关键词
lithium-ion batteries; capacity fade; impedance spectrum; rapidly cycling;
D O I
10.1016/S0378-7753(01)00821-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The impedance spectra of Li-ion batteries as a function of the number of charge-discharge cycles have been measured to study the cycle life of the commercial Li-ion battery (prismatic Sanyo UF653467) during cycling at 1 C charge-discharge rate. The individual electrodes in the batteries have been examined using XRD, transmission electron microscopy (TEM) and SEM. The results show that the Nyquist plots of commercial lithium-ion batteries are comprised of an inductive tail at high frequency followed by two semicircles at medium and low frequencies. The size of the semicircles at low frequency increase during cycling due to the increase in interfacial resistances of both cathode and anode. Thus, it may be used to predict the cycle life of the battery. XRD, TEM and SEM studies of the individual electrodes show that the cation disorder, microcracks of the LiCoO2 particles in the cathode and the increase in thickness of the passive film on the anode due to the reduction of the electrolyte are linked to the capacity fade of the battery during cycling. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:294 / 301
页数:8
相关论文
共 24 条
[1]   Recent advances in the study of layered lithium transition metal oxides and their application as intercalation electrodes [J].
Alcántara, R ;
Lavela, P ;
Tirado, JL ;
Zhecheva, E ;
Stoyaneva, R .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 1999, 3 (03) :121-134
[2]   Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries [J].
Amatucci, GG ;
Tarascon, JM ;
Klein, LC .
SOLID STATE IONICS, 1996, 83 (1-2) :167-173
[3]   Temperature dependence of the passivation layer on graphite [J].
Andersson, AM ;
Edström, K ;
Rao, N ;
Wendsjö, Å .
JOURNAL OF POWER SOURCES, 1999, 81 :286-290
[4]   Capacity fade mechanisms and side reactions in lithium-ion batteries [J].
Arora, P ;
White, RE ;
Doyle, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (10) :3647-3667
[5]   On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J].
Aurbach, D ;
Markovsky, B ;
Weissman, I ;
Levi, E ;
Ein-Eli, Y .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :67-86
[6]  
Boukamp B., 1989, EQUIVALENT CIRCUIT U
[7]   Lithium insertion into host materials: the key to success for Li ion batteries [J].
Broussely, M ;
Biensan, P ;
Simon, B .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :3-22
[8]   IMPROVED CAPACITY RETENTION IN RECHARGEABLE 4V LITHIUM LITHIUM MANGANESE OXIDE (SPINEL) CELLS [J].
GUMMOW, RJ ;
DEKOCK, A ;
THACKERAY, MM .
SOLID STATE IONICS, 1994, 69 (01) :59-67
[9]   IMPEDANCE OF ELECTRICAL STORAGE-CELLS [J].
HAMPSON, NA ;
KARUNATHILAKA, SAGR ;
LEEK, R .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1980, 10 (01) :3-11