SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries

被引:721
作者
Chen, Jun Song [1 ,2 ]
Lou, Xiong Wen [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
[2] Nanyang Technol Univ, Energy Res Inst NTU, Singapore 637553, Singapore
关键词
ONE-POT SYNTHESIS; POLYCRYSTALLINE SNO2 NANOTUBES; LARGE-SCALE SYNTHESIS; MULTIWALLED CARBON NANOTUBES; CAPACITY ANODE MATERIAL; GAS-SENSING PROPERTIES; AT-CNT NANOSTRUCTURES; HYBRID HOLLOW SPHERES; CORE-SHELL; STORAGE PROPERTIES;
D O I
10.1002/smll.201202601
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of new electrode materials for lithium-ion batteries (LIBs) has always been a focal area of materials science, as the current technology may not be able to meet the high energy demands for electronic devices with better performance. Among all the metal oxides, tin dioxide (SnO2) is regarded as a promising candidate to serve as the anode material for LIBs due to its high theoretical capacity. Here, a thorough survey is provided of the synthesis of SnO2-based nanomaterials with various structures and chemical compositions, and their application as negative electrodes for LIBs. It covers SnO2 with different morphologies ranging from 1D nanorods/nanowires/nanotubes, to 2D nanosheets, to 3D hollow nanostructures. Nanocomposites consisting of SnO2 and different carbonaceous supports, e.g., amorphous carbon, carbon nanotubes, graphene, are also investigated. The use of Sn-based nanomaterials as the anode material for LIBs will be briefly discussed as well. The aim of this review is to provide an in-depth and rational understanding such that the electrochemical properties of SnO2-based anodes can be effectively enhanced by making proper nanostructures with optimized chemical composition. By focusing on SnO2, the hope is that such concepts and strategies can be extended to other potential metal oxides, such as titanium dioxide or iron oxides, thus shedding some light on the future development of high-performance metal-oxide based negative electrodes for LIBs.
引用
收藏
页码:1877 / 1893
页数:17
相关论文
共 218 条
  • [1] SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids:: highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery
    An, Guimin
    Na, Na
    Zhang, Xinrong
    Miao, Zhenjiang
    Miao, Shiding
    Ding, Kunlun
    Liu, Zhimin
    [J]. NANOTECHNOLOGY, 2007, 18 (43)
  • [2] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [3] Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating
    Caruso, F
    Caruso, RA
    Möhwald, H
    [J]. SCIENCE, 1998, 282 (5391) : 1111 - 1114
  • [4] One-Pot Synthesis of Carbon Nanotube@SnO2-Au Coaxial Nanocable for Lithium-Ion Batteries with High Rate Capability
    Chen, Ge
    Wang, Zhenyao
    Xia, Dingguo
    [J]. CHEMISTRY OF MATERIALS, 2008, 20 (22) : 6951 - 6956
  • [5] SnO2 and TiO2 nanosheets for lithium-ion batteries
    Chen, Jun Song
    Lou, Xiong Wen
    [J]. MATERIALS TODAY, 2012, 15 (06) : 246 - 254
  • [6] Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage
    Chen, Jun Song
    Liu, Hao
    Qiao, Shi Zhang
    Lou, Xiong Wen
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (15) : 5687 - 5692
  • [7] SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries
    Chen, Jun Song
    Archer, Lynden A.
    Lou, Xiong Wen
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) : 9912 - 9924
  • [8] Fast Synthesis of α-MoO3 Nanorods with Controlled Aspect Ratios and Their Enhanced Lithium Storage Capabilities
    Chen, Jun Song
    Cheah, Yan Ling
    Madhavi, Srinivasan
    Lou, Xiong Wen
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (18) : 8675 - 8678
  • [9] One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties
    Chen, Jun Song
    Li, Chang Ming
    Zhou, Wen Wen
    Yan, Qing Yu
    Archer, Lynden A.
    Lou, Xiong Wen
    [J]. NANOSCALE, 2009, 1 (02) : 280 - 285
  • [10] SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries
    Chen, Jun Song
    Cheah, Yan Ling
    Chen, Yuan Ting
    Jayaprakash, N.
    Madhavi, Srinivasan
    Yang, Yan Hui
    Lou, Xiong Wen
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) : 20504 - 20508