Porous SiO2 as a separator to improve the electrochemical performance of spinel LiMn2O4 cathode

被引:56
作者
Chen, Jingjuan [1 ]
Wang, Suqing [1 ]
Cai, Dandan [1 ]
Wang, Haihui [1 ]
机构
[1] S China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510641, Guangdong, Peoples R China
关键词
Lithium ion battery; Separator; Inorganic Membrane; Hydrophilic SiO2; LiMn2O4 capacity fading; LOW-TEMPERATURE PERFORMANCE; LITHIUM-ION BATTERIES; POLYMER ELECTROLYTE; COMPOSITE; CHALLENGES; REDUCTION; MEMBRANE; LAYER;
D O I
10.1016/j.memsci.2013.08.028
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Porous SiO2 separator is prepared by pressing followed by sintering process. The SiO2 separator has a high porosity of 45% and good mechanical strength. After the liquid electrolyte is infiltrated, the separator exhibits quite high ionic conductivities, and the ion conductivity reaches 0.35 mS cm(-1) at -20 degrees C. More importantly, the hydrophilic SiO2 separator has an advantage over the polymer separator in the electrolyte infiltration and retention. The LiMn2O4/Li cell using the SiO2 separator shows higher discharge capacity, rate capacity, and better low-temperature properties than that using the commercial polymer separator. Furthermore, the SiO2 separator can alleviate the capacity fading of the LiMn2O4 at high temperature, implying that the SiO2 separator is very promising to be applied in the lithium-ion batteries. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 175
页数:7
相关论文
共 49 条
[21]   Preparation of a trilayer separator and its application to lithium-ion batteries [J].
Kim, Min ;
Han, Gui Young ;
Yoon, Ki June ;
Park, Jong Hyeok .
JOURNAL OF POWER SOURCES, 2010, 195 (24) :8302-8305
[22]   Al2O3 coating on LiMn2O4 by electrostatic attraction forces and its effects on the high temperature cyclic performance [J].
Kim, Won-Keun ;
Han, Dong-Wook ;
Ryu, Won-Hee ;
Lim, Sung-Jin ;
Kwon, Hyuk-Sang .
ELECTROCHIMICA ACTA, 2012, 71 :17-21
[23]   Effect of protecting metal oxide (Co3O4) layer on electrochemical properties of spinel Li1.1Mn1.9O4 as a cathode material for lithium battery applications [J].
Lee, Ki-Soo ;
Myung, Seung-Taek ;
Bang, Hyunjoo ;
Amine, Khaili ;
Kim, Dong-Won ;
Sun, Yang-Kook .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :494-498
[24]   Suppression of Jahn-Teller distortion of spinel LiMn2O4 cathode [J].
Li, Xifei ;
Xu, Youlong ;
Wang, Chunlei .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 479 (1-2) :310-313
[25]   Fumed silica-doped poly(butyl methacrylate-styrene)-based gel polymer electrolyte for lithium ion battery [J].
Liao, Y. H. ;
Rao, M. M. ;
Li, W. S. ;
Yang, L. T. ;
Zhu, B. K. ;
Xu, R. ;
Fu, C. H. .
JOURNAL OF MEMBRANE SCIENCE, 2010, 352 (1-2) :95-99
[26]   Ion exchange membranes as electrolyte for high performance Li-ion batteries [J].
Liu, Yanbo ;
Cai, Zhijun ;
Tan, Lei ;
Li, Lei .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (10) :9007-9013
[27]  
Ma JC, 2002, US Patent, Patent No. 6444356
[28]   Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries [J].
Miao, Yue-E ;
Zhu, Guan-Nan ;
Hou, Haoqing ;
Xia, Yong-Yao ;
Liu, Tianxi .
JOURNAL OF POWER SOURCES, 2013, 226 :82-86
[29]   The relevance of metal organic frameworks (MOFs) in inorganic materials chemistry [J].
Natarajan, Srinivasan ;
Mahata, Partha ;
Sarma, Debajit .
JOURNAL OF CHEMICAL SCIENCES, 2012, 124 (02) :339-353
[30]   Oxidation States of Mn Atoms at Clean and Al2O3-Covered LiMn2O4(001) Surfaces [J].
Ouyang, C. Y. ;
Zeng, X. M. ;
Sljivancanin, Z. ;
Baldereschi, A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (10) :4756-4759