We introduce the pseudohole and heavy-pseudoparticle operator algebra that generates all Hubbard-chain eigenstates from a single reference vacuum. In addition to the pseudoholes already introduced for the description of the low-energy physics, this involves the heavy pseudoparticles associated with Hamiltonian eigenstates whose energy spectrum has a gap relative to-the many-electron ground state. We introduce a generalized pseudoparticle perturbation theory that describes the relevant finite-energy ground-state transitions. In the present basis these excitations refer to a small density of excited pseudoparticles. Our operator basis goes beyond the Bethe-ansatz solution and it is the suitable and correct starting point for the study of the finite-frequency properties, which are of great relevance for the understanding of the unusual spectral properties detected in low-dimensional novel materials.