Self-consistent stability analysis of ablation fronts with large Froude numbers

被引:140
作者
Goncharov, VN [1 ]
Betti, R [1 ]
McCrory, RL [1 ]
Sorotokin, P [1 ]
Verdon, CP [1 ]
机构
[1] UNIV ROCHESTER, DEPT MECH ENGN, ROCHESTER, NY 14623 USA
关键词
D O I
10.1063/1.871730
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The linear stability analysis of accelerated ablation fronts is carried out self-consistently by retaining the effect of finite thermal conductivity. Its temperature dependence is included through a power law (kappa similar to T-nu) with a power index nu > 1. The growth rate is derived for Fr much greater than 1 (Fr is the Froude number) by using a boundary layer analysis. The self-consistent Atwood number and the ablative stabilization term depend on the mode wavelength, the density gradient scale length, and the power index nu. The analytic formula for the growth rate is shown to be in excellent agreement with the numerical fit of Takabe, Mima, Montierth, and Morse [Phys. Fluids 28, 3676 (1985)] for nu = 2.5 and the numerical results of Kull [Phys. Fluids B 1, 170 (1989)] over a large range of nu's. (C) 1996 American Institute of Physics.
引用
收藏
页码:1402 / 1414
页数:13
相关论文
共 26 条
[1]   SELF-CONSISTENT CUTOFF WAVE-NUMBER OF THE ABLATIVE RAYLEIGH-TAYLOR IN STABILITY [J].
BETTI, R ;
GONCHAROV, VN ;
MCCRORY, RL ;
VERDON, CP .
PHYSICS OF PLASMAS, 1995, 2 (10) :3844-3851
[2]   MULTIPLE CUTOFF WAVE-NUMBERS OF THE ABLATIVE RAYLEIGH-TAYLOR INSTABILITY [J].
BETTI, R ;
GONCHAROV, V ;
MCCRORY, RL ;
TURANO, E ;
VERDON, CP .
PHYSICAL REVIEW E, 1994, 50 (05) :3968-3972
[3]   STABILITY ANALYSIS OF UNSTEADY ABLATION FRONTS [J].
BETTI, R ;
MCCRORY, RL ;
VERDON, CP .
PHYSICAL REVIEW LETTERS, 1993, 71 (19) :3131-3134
[4]   RAYLEIGH-TAYLOR INSTABILITY AND LASER-PELLET FUSION [J].
BODNER, SE .
PHYSICAL REVIEW LETTERS, 1974, 33 (13) :761-764
[5]  
BOOK DL, 1992, PLASMA PHYS CONTR F, V34, P737, DOI 10.1088/0741-3335/34/5/007
[6]   STABILIZATION OF THE RAYLEIGH-TAYLOR INSTABILITY BY CONVECTION IN SMOOTH DENSITY GRADIENT - WENTZEL-KRAMERS-BRILLOUIN ANALYSIS [J].
BUDKO, AB ;
LIBERMAN, MA .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (11) :3499-3506
[7]   SELF-CONSISTENT MODEL OF THE RAYLEIGH-TAYLOR INSTABILITY IN ABLATIVELY ACCELERATED LASER-PLASMA [J].
BYCHKOV, VV ;
GOLBERG, SM ;
LIBERMAN, MA .
PHYSICS OF PLASMAS, 1994, 1 (09) :2976-2986
[8]   MEASUREMENT OF THE RAYLEIGH-TAYLOR INSTABILITY IN TARGETS DRIVEN BY OPTICALLY SMOOTHED LASER-BEAMS [J].
DESSELBERGER, M ;
WILLI, O ;
SAVAGE, M ;
LAMB, MJ .
PHYSICAL REVIEW LETTERS, 1990, 65 (24) :2997-3000
[9]   NUMERICAL-SIMULATION OF ABLATIVE RAYLEIGH-TAYLOR INSTABILITY [J].
GARDNER, JH ;
BODNER, SE ;
DAHLBURG, JP .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (04) :1070-1074
[10]   LASER-DRIVEN PLANAR RAYLEIGH-TAYLOR INSTABILITY EXPERIMENTS [J].
GLENDINNING, SG ;
WEBER, SV ;
BELL, P ;
DASILVA, LB ;
DIXIT, SN ;
HENESIAN, MA ;
KANIA, DR ;
KILKENNY, JD ;
POWELL, HT ;
WALLACE, RJ ;
WEGNER, PJ ;
KNAUER, JP ;
VERDON, CP .
PHYSICAL REVIEW LETTERS, 1992, 69 (08) :1201-1204