SHP-2 regulates the phosphatidylinositide 3′-kinase/Akt pathway and suppresses caspase 3-mediated apoptosis

被引:88
作者
Zito, CI
Kontaridis, MI
Fornaro, M
Feng, GS
Bennett, AM
机构
[1] Yale Univ, Sch Med, Dept Pharmacol, New Haven, CT 06520 USA
[2] Burnham Inst, La Jolla, CA 92037 USA
关键词
D O I
10.1002/jcp.10446
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The Src homology domain 2 (SH2)-containing tyrosine phosphatase SHP-2 has been implicated in the regulation of the phosphatidlylinositol 3'-kinase (PI3K)/Akt pathway. The ability of SHP-2 to regulate the PI3K/Akt pathway is suggested to result in the positive effect of SHP-2 on cell survival. Whether SHP-2 regulates insulin-like growth factor-1 (IGF-1)-dependent activation of Akt at the level of PI3K has yet to be established. Furthermore, the identification of the down-stream apoptotic target engaged by SHP-2 in cell survival also has yet to be determined. Here, we show that overexpression of a catalytically inactive mutant of SHP-2 inhibited insulin-like growth factor-1 (IGF-1)-dependent PI3K and Akt activation. Consistent with the observation that SHP-2 participates in pro-survival signaling fibroblasts expressing a deletion within exon 3 of SHP-2, which results in a truncation of the amino-terminus SH2 domain (SHP-2(Ex3-/-)), were hypersensitive to etoposide-induced cell death. SHP-2(Ex3-/-) fibroblasts exhibited enhanced levels of etoposide-induced caspase 3 activity as compared to wild-type fibroblasts and the enhanced level of caspase 3 activity was suppressed by a capase-3-specific inhibitor . Re-introduction of wild-type SHP-2 into the SHP-2 fibroblasts rescued the hypersensitivity to etoposide-induced caspase 3 activation. The effects of abrogating SHP-2 function on cell survival were not specific to the loss of the amino-terminus SH2 domain of SHP-2 since RNAi-mediated knock-down of SHP-2 also reduced cell survival. Taken together, these data indicate that the catalytic activity of SHP-2 is required to regulate the PI3K/Akt pathway and thus likely participates in anti-apoptotic signaling by suppressing caspase 3-mediated apoptosis. J. Cell. Physiol. 199: 227-236, 2004. (C) 2003 Wiley-Liss, Inc.
引用
收藏
页码:227 / 236
页数:10
相关论文
共 40 条
[1]   Partition identities involving gaps and weights - II [J].
Alladi, K .
RAMANUJAN JOURNAL, 1998, 2 (1-2) :21-37
[2]   PHOSPHATIDYLINOSITOL 3'-KINASE IS ACTIVATED BY ASSOCIATION WITH IRS-1 DURING INSULIN STIMULATION [J].
BACKER, JM ;
MYERS, MG ;
SHOELSON, SE ;
CHIN, DJ ;
SUN, XJ ;
MIRALPEIX, M ;
HU, P ;
MARGOLIS, B ;
SKOLNIK, EY ;
SCHLESSINGER, J ;
WHITE, MF .
EMBO JOURNAL, 1992, 11 (09) :3469-3479
[3]  
Ballif BA, 2001, CELL GROWTH DIFFER, V12, P397
[4]   Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2 [J].
Barford, D ;
Neel, BG .
STRUCTURE, 1998, 6 (03) :249-254
[5]  
Bennett AM, 1996, MOL CELL BIOL, V16, P1189
[6]   PROTEIN-TYROSINE-PHOSPHATASE SHPTP2 COUPLES PLATELET-DERIVED GROWTH-FACTOR RECEPTOR-BETA TO RAS [J].
BENNETT, AM ;
TANG, TL ;
SUGIMOTO, S ;
WALSH, CT ;
NEEL, BG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (15) :7335-7339
[7]   Divergent roles of SHP-2 in ERK activation by leptin receptors [J].
Bjorbæk, C ;
Buchholz, RM ;
Davis, SM ;
Bates, SH ;
Pierroz, DD ;
Gu, H ;
Neel, BG ;
Myers, MG ;
Flier, JS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (07) :4747-4755
[8]   Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms [J].
Bonni, A ;
Brunet, A ;
West, AE ;
Datta, SR ;
Takasu, MA ;
Greenberg, ME .
SCIENCE, 1999, 286 (5443) :1358-1362
[9]   Regulation of cell death protease caspase-9 by phosphorylation [J].
Cardone, MH ;
Roy, N ;
Stennicke, HR ;
Salvesen, GS ;
Franke, TF ;
Stanbridge, E ;
Frisch, S ;
Reed, JC .
SCIENCE, 1998, 282 (5392) :1318-1321
[10]   Regulation of Akt/PKB activation by tyrosine phosphorylation [J].
Chen, RY ;
Kim, O ;
Yang, JB ;
Sato, K ;
Eisenmann, KM ;
McCarthy, J ;
Chen, HG ;
Qiu, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (34) :31858-31862