Defect engineering aspects of advanced Ge process modules

被引:15
作者
Claeys, C. [1 ,2 ]
Simoen, E. [1 ]
Opsomer, K. [1 ,2 ]
Brunco, D. P. [3 ]
Meuris, M. [1 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, EE Dept, B-3001 Louvain, Belgium
[3] IMEC, Ind Resident Intel, Santa Clara, CA USA
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2008年 / 154卷
关键词
Ge processing; Shallow junctions; Implantation damage; Germanidation;
D O I
10.1016/j.mseb.2008.07.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Germanium receives world-wide a renewed interest due to its strong potential as high-mobility channel material for deep submicron high-performance technologies. Ge processing has been demonstrated to be compatible with Si technology and has the important benefit that compared to Si lower thermal budgets are required for dopant activation and implantation-induced defect anneal. However, many challenges remain, like interface passivation, gate stack formation, contact technology, and the fabrication of high-performing n-channel devices. This review will cover some advanced Ge processing modules from a viewpoint of defect control and engineering. Attention is first briefly given to defect aspects related to the fabrication of bulk Ge substrates or thin Ge films on either oxide or Si. Next shallow junction formation is addressed, where the thermal anneal procedure must be optimised for minimising junction depth without compromising dopant activation and defect annealing. The discussion will focus on different dopant species such as B, P, As and Sb. Finally, the contact technology is addressed for a variety of germanides, i.e., Co, Cu, Ni, Fe, Pd, Pt, etc. A control of the metal interaction with point defects and geometrical effects play a crucial role for performance optimisation and yield enhancement. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 30 条
[1]  
[Anonymous], 2006, IEDM, DOI DOI 10.1109/IEDM.2006.346870
[2]   Germanium MOSFET devices: Advances in materials understanding, process development, and electrical performance [J].
Brunco, D. P. ;
De Jaeger, B. ;
Eneman, G. ;
Mitard, J. ;
Hellings, G. ;
Satta, A. ;
Terzieva, V. ;
Souriau, L. ;
Leys, F. E. ;
Pourtois, G. ;
Houssa, M. ;
Winderickx, G. ;
Vrancken, E. ;
Sioncke, S. ;
Opsomer, K. ;
Nicholas, G. ;
Caymax, M. ;
Stesmans, A. ;
Van Steenbergen, J. ;
Mertens, P. W. ;
Meuris, M. ;
Heyns, M. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (07) :H552-H561
[3]   Observation and suppression of nickel germanide overgrowth on germanium substrates with patterned SiO2 structures [J].
Brunco, D. P. ;
Opsomer, K. ;
De Jaeger, B. ;
Winderickx, G. ;
Verheyden, K. ;
Meuris, M. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (02) :H39-H41
[4]   Preamorphization implantation-assisted boron activation in bulk germanium and germanium-on-insulator [J].
Chao, YL ;
Prussin, S ;
Woo, JCS ;
Scholz, R .
APPLIED PHYSICS LETTERS, 2005, 87 (14) :1-3
[5]   Germanium n-type shallow junction activation dependences -: art. no. 091909 [J].
Chui, CO ;
Kulig, L ;
Moran, J ;
Tsai, W ;
Saraswat, KC .
APPLIED PHYSICS LETTERS, 2005, 87 (09)
[6]  
Claeys C., 2007, GERMANIUM BASED TECH
[7]  
DEPUYDT B, 2007, GERMANIUM BASED TECH, pCH1
[8]   Germanium: From the first application of Czochralski crystal growth to large diameter dislocation-free wafers [J].
Depuydt, Ben ;
Theuws, Antoon ;
Romandic, Igor .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2006, 9 (4-5) :437-443
[9]   Modeling of transient point defect dynamics in Czochralski silicon crystals [J].
Dornberger, E ;
von Ammon, W ;
Virbulis, J ;
Hanna, B ;
Sinno, T .
JOURNAL OF CRYSTAL GROWTH, 2001, 230 (1-2) :291-299
[10]   Thin film reaction of transition metals with germanium [J].
Gaudet, S ;
Detavernier, C ;
Kellock, AJ ;
Desjardins, P ;
Lavoie, C .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2006, 24 (03) :474-485