Enhancing Solar Cell Efficiencies through 1-D Nanostructures

被引:250
作者
Yu, Kehan [1 ]
Chen, Junhong [1 ]
机构
[1] Univ Wisconsin, Dept Mech Engn, Milwaukee, WI 53211 USA
来源
NANOSCALE RESEARCH LETTERS | 2009年 / 4卷 / 01期
基金
美国国家科学基金会;
关键词
Solar cells; Nanowires; Nanotubes; Nanorods; Quantum dots; Hybrid nanostructures; TIO2 NANOTUBE ARRAYS; WALLED CARBON NANOTUBES; PHOTOINDUCED CHARGE-TRANSFER; SI NANOWIRE ARRAYS; ELECTRON-TRANSPORT; ENERGY-CONVERSION; QUANTUM DOTS; CDSE NANOCRYSTALS; ZNO NANOWIRES; BACK-REACTION;
D O I
10.1007/s11671-008-9200-y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 136 条
[61]   Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication [J].
Klimov, Victor I. .
APPLIED PHYSICS LETTERS, 2006, 89 (12)
[62]   SPECTRAL SENSITIZATION OF A TIO2 SEMICONDUCTOR ELECTRODE BY CDS MICROCRYSTALS AND ITS PHOTOELECTROCHEMICAL PROPERTIES [J].
KOHTANI, S ;
KUDO, A ;
SAKATA, T .
CHEMICAL PHYSICS LETTERS, 1993, 206 (1-4) :166-170
[63]  
Könenkamp R, 2000, PHYS REV B, V61, P11057, DOI 10.1103/PhysRevB.61.11057
[64]   Quantum dot solar cells.: Tuning photoresponse through size and shape control of CdSe-TiO2 architecture [J].
Kongkanand, Anusorn ;
Tvrdy, Kevin ;
Takechi, Kensuke ;
Kuno, Masaru ;
Kamat, Prashant V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (12) :4007-4015
[65]   Spatial location of transport-limiting traps in TiO2 nanoparticle films in dye-sensitized solar cells -: art. no. 202106 [J].
Kopidakis, N ;
Neale, NR ;
Zhu, K ;
van de Lagemaat, J ;
Frank, AJ .
APPLIED PHYSICS LETTERS, 2005, 87 (20) :1-3
[66]   Nanowire dye-sensitized solar cells [J].
Law, M ;
Greene, LE ;
Johnson, JC ;
Saykally, R ;
Yang, PD .
NATURE MATERIALS, 2005, 4 (06) :455-459
[67]   ZnO nanostructures as efficient antireflection layers in solar cells [J].
Lee, Yun-Ju ;
Ruby, Douglas S. ;
Peters, David W. ;
McKenzie, Bonnie B. ;
Hsu, Julia W. P. .
NANO LETTERS, 2008, 8 (05) :1501-1505
[68]   Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices [J].
Leschkies, Kurtis S. ;
Divakar, Ramachandran ;
Basu, Joysurya ;
Enache-Pommer, Emil ;
Boercker, Janice E. ;
Carter, C. Barry ;
Kortshagen, Uwe R. ;
Norris, David J. ;
Aydil, Eray S. .
NANO LETTERS, 2007, 7 (06) :1793-1798
[69]  
LEWIS NS, 2005, BASIC EN SCI WORKSH
[70]  
Li LY, 2006, NANO LETT, V6, P1007, DOI [10.1021/nl060276q, 10.1021/nl060278q]