Mutual Information Rate and Bounds for It

被引:19
作者
Baptista, Murilo S. [1 ]
Rubinger, Rero M. [3 ]
Viana, Emilson R. [2 ]
Sartorelli, Jose C. [4 ]
Parlitz, Ulrich [5 ,6 ]
Grebogi, Celso [1 ,7 ]
机构
[1] Univ Aberdeen, Scottish Univ Phys Alliance, Inst Complex Syst & Math Biol, Aberdeen, Scotland
[2] Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept F S, Belo Horizonte, MG, Brazil
[3] Univ Fed Itajuba, Inst Chem & Phys, Itajuba, Brazil
[4] Univ Sao Paulo, Inst Phys, Sao Paulo, Brazil
[5] Max Planck Inst Dynam & Self Org, Biomed Phys Grp, Gottingen, Germany
[6] Univ Gottingen, Inst Nonlinear Dynam, Gottingen, Germany
[7] Univ Freiburg, Freiburg Inst Adv Studies, D-79106 Freiburg, Germany
来源
PLOS ONE | 2012年 / 7卷 / 10期
基金
英国工程与自然科学研究理事会;
关键词
METRIC INVARIANT; ENTROPY; TIME; SYSTEMS;
D O I
10.1371/journal.pone.0046745
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The amount of information exchanged per unit of time between two nodes in a dynamical network or between two data sets is a powerful concept for analysing complex systems. This quantity, known as the mutual information rate (MIR), is calculated from the mutual information, which is rigorously defined only for random systems. Moreover, the definition of mutual information is based on probabilities of significant events. This work offers a simple alternative way to calculate the MIR in dynamical (deterministic) networks or between two time series (not fully deterministic), and to calculate its upper and lower bounds without having to calculate probabilities, but rather in terms of well known and well defined quantities in dynamical systems. As possible applications of our bounds, we study the relationship between synchronisation and the exchange of information in a system of two coupled maps and in experimental networks of coupled oscillators.
引用
收藏
页数:10
相关论文
共 41 条
[1]   Theoretical and experimental time series analysis of an inductorless Chua's circuit [J].
Albuquerque, Holokx A. ;
Rubinger, Rero M. ;
Rech, Paulo C. .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 233 (01) :66-72
[2]  
[Anonymous], 1998, NONLINEAR TIME SERIE
[3]  
[Anonymous], PHYS REV E
[4]  
[Anonymous], 1978, Bull. Soc. Braz. Math., DOI DOI 10.1007/BF02584795
[5]  
[Anonymous], ARXIVMATHPH0304043
[6]   Transmission of information in active networks [J].
Baptista, M. S. ;
Kurths, J. .
PHYSICAL REVIEW E, 2008, 77 (02)
[7]   Upper bounds in phase synchronous weak coherent chaotic attractors [J].
Baptista, M. S. ;
Pereira, T. ;
Kurths, J. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (02) :260-268
[8]   Kolmogorov-Sinai entropy from recurrence times [J].
Baptista, M. S. ;
Ngamga, E. J. ;
Pinto, Paulo R. F. ;
Brito, Margarida ;
Kurths, J. .
PHYSICS LETTERS A, 2010, 374 (09) :1135-1140
[9]   Onset of symmetric plasma turbulence [J].
Baptista, MS ;
Caldas, IL ;
Heller, MVA ;
Ferreira, AA .
PHYSICA A, 2001, 301 (1-4) :150-162
[10]   Finding Quasi-Optimal Network Topologies for Information Transmission in Active Networks [J].
Baptista, Murilo S. ;
de Carvalho, Josue X. ;
Hussein, Mahir S. .
PLOS ONE, 2008, 3 (10)