Upper bounds in phase synchronous weak coherent chaotic attractors

被引:11
作者
Baptista, M. S. [1 ]
Pereira, T. [1 ]
Kurths, J. [1 ]
机构
[1] Univ Potsdam, Inst Phys, Arbeit Grp Arbeitsgrp Nichtlineare Dynam, D-14469 Potsdam, Germany
关键词
chaotic phase synchronization; phase of chaotic attractors;
D O I
10.1016/j.physd.2006.02.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An approach is presented for coupled chaotic systems with weak coherent motion, from which we estimate the upper bound value for the absolute phase difference in phase synchronous states. This approach shows that synchronicity in phase implies synchronicity in the time of events, a characteristic explored to derive an equation to detect phase synchronization, based on the absolute difference between the time of these events. We demonstrate the potential use of this approach for the phase coherent and the funnel attractor of the Rossler system, as well as for the spiking/bursting Rulkov map. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:260 / 268
页数:9
相关论文
共 23 条
[1]   Irrational phase synchronization [J].
Baptista, MS ;
Boccaletti, S ;
Josic, K ;
Leyva, I .
PHYSICAL REVIEW E, 2004, 69 (05) :5
[2]   Non-transitive maps in phase synchronization [J].
Baptista, MS ;
Pereira, T ;
Sartorelli, JC ;
Caldas, IL ;
Kurths, J .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 212 (3-4) :216-232
[3]   Phase synchronization in the perturbed Chua circuit [J].
Baptista, MS ;
Silva, TP ;
Sartorelli, JC ;
Caldas, IL ;
Rosa, E .
PHYSICAL REVIEW E, 2003, 67 (05) :5-056212
[4]   A geometric theory of chaotic phase synchronization [J].
Beck, M ;
Josic, K .
CHAOS, 2003, 13 (01) :247-258
[5]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[6]  
Fell J, 2002, REV NEUROSCIENCE, V13, P299
[7]  
JALAN S, 2000, PHYS REV LETT, V90
[8]   Phase synchronization of chaotic systems with small phase diffusion [J].
Josic, K ;
Mar, DJ .
PHYSICAL REVIEW E, 2001, 64 (05) :10-056234
[9]   Phase synchronization and suppression of chaos through intermittency in forcing of an electrochemical oscillator [J].
Kiss, IZ ;
Hudson, JL .
PHYSICAL REVIEW E, 2001, 64 (04) :8-462158
[10]   Introduction: Control and synchronization in chaotic dynamical systems [J].
Kurths, J ;
Boccaletti, S ;
Grebogi, C ;
Lai, YC .
CHAOS, 2003, 13 (01) :126-127