Non-transitive maps in phase synchronization

被引:17
作者
Baptista, MS [1 ]
Pereira, T
Sartorelli, JC
Caldas, IL
Kurths, J
机构
[1] Univ Potsdam, Inst Phys Neuen Palais 10, D-14469 Potsdam, Germany
[2] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
chaotic phase synchronization; ergodic theory; temporal mappings;
D O I
10.1016/j.physd.2005.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Concepts from Ergodic Theory are used to describe the existence of special non-transitive maps in attractors of phase synchronous chaotic oscillators. In particular, it is shown that, for a class of phase-coherent oscillators, these special maps imply phase synchronization. We illustrate these ideas in the sinusoidally forced Chua's circuit and two coupled Rossler oscillators. Furthermore, these results are extended to other coupled chaotic systems. In addition, a phase for a chaotic attractor is defined from the tangent vector of the flow. Finally, it is discussed how these maps can be used for the real-time detection of phase synchronization in experimental systems. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:216 / 232
页数:17
相关论文
共 26 条
[1]  
[Anonymous], 1996, INTRO APPL NONLINEAR
[2]  
[Anonymous], 2003, EMERGING SCI SPONTAN
[4]   Dynamics of the kicked logistic map [J].
Baptista, MS ;
Caldas, IL .
CHAOS SOLITONS & FRACTALS, 1996, 7 (03) :325-336
[5]   Irrational phase synchronization [J].
Baptista, MS ;
Boccaletti, S ;
Josic, K ;
Leyva, I .
PHYSICAL REVIEW E, 2004, 69 (05) :5
[6]   Phase synchronization in the perturbed Chua circuit [J].
Baptista, MS ;
Silva, TP ;
Sartorelli, JC ;
Caldas, IL ;
Rosa, E .
PHYSICAL REVIEW E, 2003, 67 (05) :5-056212
[7]   The parameter space structure of the kicked logistic map and its stability [J].
Baptista, MS ;
Caldas, IL .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (02) :447-457
[8]  
BAPTISTA MS, 2004, AIP P 8 EXP CHAOS C
[9]   A geometric theory of chaotic phase synchronization [J].
Beck, M ;
Josic, K .
CHAOS, 2003, 13 (01) :247-258
[10]   Ecology - Nonlinearity and the Moran effect [J].
Blasius, B ;
Stone, L .
NATURE, 2000, 406 (6798) :846-847