Non-transitive maps in phase synchronization

被引:17
作者
Baptista, MS [1 ]
Pereira, T
Sartorelli, JC
Caldas, IL
Kurths, J
机构
[1] Univ Potsdam, Inst Phys Neuen Palais 10, D-14469 Potsdam, Germany
[2] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
chaotic phase synchronization; ergodic theory; temporal mappings;
D O I
10.1016/j.physd.2005.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Concepts from Ergodic Theory are used to describe the existence of special non-transitive maps in attractors of phase synchronous chaotic oscillators. In particular, it is shown that, for a class of phase-coherent oscillators, these special maps imply phase synchronization. We illustrate these ideas in the sinusoidally forced Chua's circuit and two coupled Rossler oscillators. Furthermore, these results are extended to other coupled chaotic systems. In addition, a phase for a chaotic attractor is defined from the tangent vector of the flow. Finally, it is discussed how these maps can be used for the real-time detection of phase synchronization in experimental systems. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:216 / 232
页数:17
相关论文
共 26 条
[11]  
De Grauwe P., 1993, EXCHANGE RATE THEORY, DOI DOI 10.2307/2554626
[12]  
Fell J, 2002, REV NEUROSCIENCE, V13, P299
[13]   Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication [J].
Fischer, I ;
Liu, Y ;
Davis, P .
PHYSICAL REVIEW A, 2000, 62 (01) :4
[14]   Phase synchronization in ensembles of bursting oscillators [J].
Ivanchenko, MV ;
Osipov, GV ;
Shalfeev, VD ;
Kurths, J .
PHYSICAL REVIEW LETTERS, 2004, 93 (13) :134101-1
[15]   Phase synchronization of chaotic systems with small phase diffusion [J].
Josic, K ;
Mar, DJ .
PHYSICAL REVIEW E, 2001, 64 (05) :10-056234
[16]   Phase synchronization and suppression of chaos through intermittency in forcing of an electrochemical oscillator [J].
Kiss, IZ ;
Hudson, JL .
PHYSICAL REVIEW E, 2001, 64 (04) :8-462158
[17]   Competition of synchronization domains in arrays of chaotic homoclinic systems [J].
Leyva, I ;
Allaria, E ;
Boccaletti, S ;
Arecchi, FT .
PHYSICAL REVIEW E, 2003, 68 (06) :662091-662095
[18]   Epileptic seizures are preceded by a decrease in synchronization [J].
Mormann, F ;
Kreuz, T ;
Andrzejak, RG ;
David, P ;
Lehnertz, K ;
Elger, CE .
EPILEPSY RESEARCH, 2003, 53 (03) :173-185
[19]  
Osipov V., 2003, PHYS REV LETT, V91
[20]   Experimental observation of phase synchronization [J].
Parlitz, U ;
Junge, L ;
Lauterborn, W ;
Kocarev, L .
PHYSICAL REVIEW E, 1996, 54 (02) :2115-2117