Phase synchronization of chaotic systems with small phase diffusion

被引:42
作者
Josic, K [1 ]
Mar, DJ
机构
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[2] Boston Univ, Ctr Biodynam, Boston, MA 02215 USA
[3] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 05期
关键词
D O I
10.1103/PhysRevE.64.056234
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The geometric theory of phase locking between periodic oscillators is extended to phase coherent chaotic systems. This approach explains the qualitative features of phase locked chaotic systems and provides an analytical tool for a quantitative description of the phase locked states. Moreover. this geometric viewpoint allows us to identify obstructions to phase locking even in systems with negligible phase diffusion, and to provide sufficient conditions for phase locking to occur. We apply these techniques to the Rossler system and a phase coherent electronic circuit and find that numerical results and experiments agree well with theoretical predictions.
引用
收藏
页码:10 / 056234
页数:10
相关论文
共 40 条
[1]   Noise scaling of phase synchronization of chaos [J].
Andrade, V ;
Davidchack, RL ;
Lai, YC .
PHYSICAL REVIEW E, 2000, 61 (03) :3230-3233
[2]   Complex dynamics and phase synchronization in spatially extended ecological systems [J].
Blasius, B ;
Huppert, A ;
Stone, L .
NATURE, 1999, 399 (6734) :354-359
[3]   Unifying framework for synchronization of coupled dynamical systems [J].
Boccaletti, S. ;
Pecora, L.M. ;
Pelaez, A. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 63 (6 II) :1-066219
[4]   Properties of phase locking with weak phase-coherent attractors [J].
Chen, JY ;
Wong, KW ;
Shuai, JW .
PHYSICS LETTERS A, 2001, 285 (5-6) :312-318
[5]  
Dykman G. I., 1991, Chaos, Solitons and Fractals, V1, P339, DOI 10.1016/0960-0779(91)90025-5
[6]   Synchronous behavior of two coupled biological neurons [J].
Elson, RC ;
Selverston, AI ;
Huerta, R ;
Rulkov, NF ;
Rabinovich, MI ;
Abarbanel, HDI .
PHYSICAL REVIEW LETTERS, 1998, 81 (25) :5692-5695
[7]   OSCILLATOR DEATH IN SYSTEMS OF COUPLED NEURAL OSCILLATORS [J].
ERMENTROUT, GB ;
KOPELL, N .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (01) :125-146
[8]  
FENICHEL N, 1971, INDIANA U MATH J, V21, P193
[9]  
Fitzgerald R, 1999, PHYS TODAY, V52, P17, DOI 10.1063/1.882606
[10]  
Glass L., 1988, CLOCKS CHAOS RHYTHMS, DOI [10.1515/9780691221793, DOI 10.1515/9780691221793]