Properties of phase locking with weak phase-coherent attractors

被引:21
作者
Chen, JY
Wong, KW [1 ]
Shuai, JW
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[2] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
关键词
phase locking; synchronization; chaos; diffusion constant;
D O I
10.1016/S0375-9601(01)00367-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In coupled chaotic oscillators, the synchronization with weak phase-coherent attractors is different from that with strong phase-coherent ones. The properties of phase locking for weak phase-coherent attractors are studied with examples. For a small parameter mismatch, transition to phase locking is close to the position where the second zero Lyapunov exponent becomes negative and one of the positive Lyapunov exponents becomes zero simultaneously. However. for a large mismatch, it occurs at a farther position evidently. These results lead to a better understanding of the properties of synchronization in coupled oscillators. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:312 / 318
页数:7
相关论文
共 24 条
[1]   NONTRIVIAL STRUCTURE OF SYNCHRONIZATION ZONES IN MULTIDIMENSIONAL SYSTEMS [J].
ARANSON, IS ;
RULKOV, NF .
PHYSICS LETTERS A, 1989, 139 (08) :375-378
[2]   Phase synchronization in discrete chaotic systems [J].
Chen, JY ;
Wong, KW ;
Chen, ZX ;
Xu, SC ;
Shuai, JW .
PHYSICAL REVIEW E, 2000, 61 (03) :2559-2562
[3]   Phase signal coupling induced n:m phase synchronization in drive-response oscillators -: art. no. 036214 [J].
Chen, JY ;
Wong, KW ;
Zheng, HY ;
Shuai, JW .
PHYSICAL REVIEW E, 2001, 63 (03) :362141-362146
[4]   Finding the chaotic synchronizing state with gradient descent algorithm [J].
Chen, JY ;
Wong, KW ;
Shuai, JW .
PHYSICS LETTERS A, 1999, 263 (4-6) :315-322
[5]   POWER SPECTRAL-ANALYSIS OF A DYNAMICAL SYSTEM [J].
CRUTCHFIELD, J ;
FARMER, D ;
PACKARD, N ;
SHAW, R ;
JONES, G ;
DONNELLY, RJ .
PHYSICS LETTERS A, 1980, 76 (01) :1-4
[6]   FORCING AN ENTIRE BIFURCATION DIAGRAM - CASE-STUDIES IN CHEMICAL OSCILLATORS [J].
KEVREKIDIS, IG ;
ARIS, R ;
SCHMIDT, LD .
PHYSICA D, 1986, 23 (1-3) :391-395
[7]   Phase synchronization with type-II intermittency in chaotic oscillators [J].
Kim, I ;
Kim, CM ;
Kye, WH ;
Park, YJ .
PHYSICAL REVIEW E, 2000, 62 (06) :8826-8829
[8]   Intermittency in chaotic rotations [J].
Lai, YC ;
Armbruster, D ;
Kostelich, EJ .
PHYSICAL REVIEW E, 2000, 62 (01) :R29-R32
[9]   Phase jumps near a phase synchronization transition in systems of two coupled chaotic oscillators [J].
Lee, KJ ;
Kwak, Y ;
Lim, TK .
PHYSICAL REVIEW LETTERS, 1998, 81 (02) :321-324
[10]  
Mosekilde E., 1996, TOPICS NONLINEAR DYN