Intermittency in chaotic rotations

被引:12
作者
Lai, YC [1 ]
Armbruster, D
Kostelich, EJ
机构
[1] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
[2] Arizona State Univ, Ctr Syst Sci & Engn Res, Dept Elect Engn, Tempe, AZ 85287 USA
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 01期
关键词
D O I
10.1103/PhysRevE.62.R29
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We examine the rotational dynamics associated with bounded chaotic flows, such as those on chaotic attractors, and find that the dynamics typically exhibits on-off intermittency. In particular, a properly defined chaotic rotation tends to follow, approximately, the phase-space rotation of a harmonic oscillator with occasional bursts away from this nearly uniform rotation. The intermittent behavior is identified in several well studied chaotic systems, and an argument is provided for the generality of this behavior.
引用
收藏
页码:R29 / R32
页数:4
相关论文
共 31 条
[1]   Noise scaling of phase synchronization of chaos [J].
Andrade, V ;
Davidchack, RL ;
Lai, YC .
PHYSICAL REVIEW E, 2000, 61 (03) :3230-3233
[2]  
[Anonymous], IEEE T CAS
[3]   Complex dynamics and phase synchronization in spatially extended ecological systems [J].
Blasius, B ;
Huppert, A ;
Stone, L .
NATURE, 1999, 399 (6734) :354-359
[4]   INTERMITTENCY CAUSED BY CHAOTIC MODULATION .2. LYAPUNOV EXPONENT, FRACTAL STRUCTURE AND POWER SPECTRUM [J].
FUJISAKA, H ;
ISHII, H ;
INOUE, M ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1986, 76 (06) :1198-1209
[5]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS .4. INSTABILITY OF SYNCHRONIZED CHAOS AND NEW INTERMITTENCY [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1986, 75 (05) :1087-1104
[6]  
FUJISAKA H, 1985, PROG THEOR PHYS, V74, P919
[7]  
Gabor D., 1946, J I ELEC ENGRS PART, V93, P429, DOI [DOI 10.1049/JI-3-2.1946.0074, 10.1049/ji-3-2.1946.0074, 10.1049/JI-3-2.1946.0074]
[8]   CHARACTERIZATION OF ON-OFF INTERMITTENCY [J].
HEAGY, JF ;
PLATT, N ;
HAMMEL, SM .
PHYSICAL REVIEW E, 1994, 49 (02) :1140-1150
[9]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[10]   INTERMINGLED BASINS AND 2-STATE ON-OFF INTERMITTENCY [J].
LAI, YC ;
GREBOGI, C .
PHYSICAL REVIEW E, 1995, 52 (04) :R3313-R3316