INTERMINGLED BASINS AND 2-STATE ON-OFF INTERMITTENCY

被引:133
作者
LAI, YC
GREBOGI, C
机构
[1] UNIV KANSAS, KANSAS INST THEORET & COMPUTAT SCI, DEPT MATH, DEPT PHYS & ASTRON, LAWRENCE, KS 66045 USA
[2] UNIV MARYLAND, INST PHYS SCI & TECHNOL, DEPT MATH, COLLEGE PK, MD 20742 USA
关键词
D O I
10.1103/PhysRevE.52.R3313
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider dynamical systems which possess two low-dimensional symmetric invariant subspaces. In each subspace, there is a chaotic attractor, and there are no other attractors in the phase space. As a parameter of the system changes, the largest Lyapunov exponents transverse to the invariant subspaces can change from negative to positive: the former corresponds to the situation where the basins of the attractors are intermingled, while the latter corresponds to the case where the system exhibits a two-state on-off intermittency. The phenomenon is investigated using a physical example where particles move in a two-dimensional potential, subjected to friction and periodic forcing.
引用
收藏
页码:R3313 / R3316
页数:4
相关论文
共 25 条
  • [1] RIDDLED BASINS
    Alexander, J. C.
    Yorke, James A.
    You, Zhiping
    Kan, I.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04): : 795 - 813
  • [2] A NEW INTERMITTENCY IN COUPLED DYNAMICAL-SYSTEMS
    FUJISAKA, H
    YAMADA, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1985, 74 (04): : 918 - 921
  • [3] INTERMITTENCY CAUSED BY CHAOTIC MODULATION .2. LYAPUNOV EXPONENT, FRACTAL STRUCTURE AND POWER SPECTRUM
    FUJISAKA, H
    ISHII, H
    INOUE, M
    YAMADA, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1986, 76 (06): : 1198 - 1209
  • [4] STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS .4. INSTABILITY OF SYNCHRONIZED CHAOS AND NEW INTERMITTENCY
    FUJISAKA, H
    YAMADA, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1986, 75 (05): : 1087 - 1104
  • [5] CHARACTERIZATION OF ON-OFF INTERMITTENCY
    HEAGY, JF
    PLATT, N
    HAMMEL, SM
    [J]. PHYSICAL REVIEW E, 1994, 49 (02) : 1140 - 1150
  • [6] EXPERIMENTAL AND NUMERICAL EVIDENCE FOR RIDDLED BASINS IN COUPLED CHAOTIC SYSTEMS
    HEAGY, JF
    CARROLL, TL
    PECORA, LM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 73 (26) : 3528 - 3531
  • [7] NON-LINEAR OSCILLATOR WITH A STRANGE ATTRACTOR
    HOLMES, P
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1979, 292 (1394): : 419 - 448
  • [9] EXTREME SENSITIVE DEPENDENCE ON PARAMETERS AND INITIAL CONDITIONS IN SPATIOTEMPORAL CHAOTIC DYNAMICAL-SYSTEMS
    LAI, YC
    WINSLOW, RL
    [J]. PHYSICA D, 1994, 74 (3-4): : 353 - 371
  • [10] RIDDLED PARAMETER SPACE IN SPATIOTEMPORAL CHAOTIC DYNAMICAL-SYSTEMS
    LAI, YC
    WINSLOW, RL
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (11) : 1640 - 1643