OPEN SETS OF DIFFEOMORPHISMS HAVING 2 ATTRACTORS, EACH WITH AN EVERYWHERE DENSE BASIN

被引:92
作者
KAN, I
机构
关键词
D O I
10.1090/S0273-0979-1994-00507-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We announce the discovery of a diffeomorphism of a three-dimensional manifold with boundary which has two disjoint attractors. Each attractor attracts a set of positive 3-dimensional Lebesgue measure whose points of Lebesgue density are dense in the whole manifold. This situation is stable under small perturbations.
引用
收藏
页码:68 / 74
页数:7
相关论文
共 10 条
[1]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[2]  
BOWEN R, 1978, C SER MATH, V35
[3]  
Il'yashenko Ju. S., 1991, Chaos, V1, P168, DOI 10.1063/1.165825
[4]  
KAN I, IN PRESS ERGODIC THE
[5]  
KATOK A, 1986, LECTURE NOTES MATH, V1222
[6]   FRACTAL BASIN BOUNDARIES [J].
MCDONALD, SW ;
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1985, 17 (02) :125-153
[7]   ON THE CONCEPT OF ATTRACTOR [J].
MILNOR, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (02) :177-195
[8]  
Pesin YB, 1977, RUSS MATH SURV, V32, P55, DOI [10.1070/RM1977v032n04ABEH001639, DOI 10.1070/RM1977V032N04ABEH001639]
[9]   ERGODIC ATTRACTORS [J].
PUGH, C ;
SHUB, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 312 (01) :1-54
[10]  
[No title captured]