The response of NaV1.3 sodium channels to ramp stimuli: multiple components and mechanisms

被引:31
作者
Estacion, Mark [1 ,2 ,3 ]
Waxman, Stephen G. [1 ,2 ,3 ]
机构
[1] Yale Univ, Sch Med, Dept Neurol, New Haven, CT 06510 USA
[2] Yale Univ, Sch Med, Ctr Neurosci & Regenerat Res, New Haven, CT USA
[3] Vet Affairs Connecticut Healthcare Syst, Rehabil Res Ctr, West Haven, CT USA
关键词
sodium channel; persistent current; ramp current; voltage-clamp; window current; SPINAL SENSORY NEURONS; CLOSED-STATE INACTIVATION; LAYER-V NEURONS; UP-REGULATION; NERVE INJURY; HORN NEURONS; DRG NEURONS; PERSISTENT; RAT; CURRENTS;
D O I
10.1152/jn.00438.2012
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Estacion M, Waxman SG. The response of Na(V)1.3 sodium channels to ramp stimuli: multiple components and mechanisms. J Neurophysiol 109: 306-314, 2013. First published October 31, 2012; doi:10.1152/jn.00438.2012.-Na(V)1.3 voltage-gated sodium channels have been shown to be expressed at increased levels within axotomized dorsal root ganglion neurons and within injured axons within neuromas and have been implicated in neuropathic pain. Like a number of other sodium channel isoforms, Na(V)1.3 channels produce a robust response to slow ramplike stimuli. Here we show that the response of Na(V)1.3 to ramp stimuli consists of two components: an early component, dependent upon ramp rate, that corresponds to a window current that is dependent upon closed-state inactivation; and a second component at more depolarized potentials that is correlated with persistent current which is detected for many tens of milliseconds after the start of a depolarizing pulse. We also assessed the K354Q Na(V)1.3 epilepsy-associated mutant channel, which is known to display an enhanced persistent current and demonstrate a strong correlation with the second component of the ramp response. Our results show that a single sodium channel isoform can produce a ramp response with multiple components, reflecting multiple mechanisms, and suggest that the upregulated expression of Na(V)1.3 in axotomized dorsal root ganglion neurons and enhanced ramp current in K354Q mutant channels can contribute in several ways to hyperexcitability and abnormal spontaneous firing that contribute to hyperexcitability disorders, such as epilepsy and neuropathic pain.
引用
收藏
页码:306 / 314
页数:9
相关论文
共 38 条
[1]   Persistent sodium channel activity mediates subthreshold membrane potential oscillations and low-threshold spikes in rat entorhinal cortex layer V neurons [J].
Agrawal, N ;
Hamam, BN ;
Magistretti, J ;
Alonso, A ;
Ragsdale, DS .
NEUROSCIENCE, 2001, 102 (01) :53-64
[2]   Persistent sodium current in layer 5 neocortical neurons is primarily generated in the proximal axon [J].
Astman, N ;
Gutnick, MJ ;
Fleidervish, IA .
JOURNAL OF NEUROSCIENCE, 2006, 26 (13) :3465-3473
[3]   Nociceptors Are Interleukin-1β Sensors [J].
Binshtok, Alexander M. ;
Wang, Haibin ;
Zimmermann, Katharina ;
Amaya, Fumimasa ;
Vardeh, Daniel ;
Shi, Lin ;
Brenner, Gary J. ;
Ji, Ru-Rong ;
Bean, Bruce P. ;
Woolf, Clifford J. ;
Samad, Tarek A. .
JOURNAL OF NEUROSCIENCE, 2008, 28 (52) :14062-14073
[4]   Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons [J].
Black, JA ;
Cummins, TR ;
Plumpton, C ;
Chen, YH ;
Hormuzdiar, W ;
Clare, JJ ;
Waxman, SG .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 82 (05) :2776-2785
[5]   Multiple Sodium Channel Isoforms and Mitogen-Activated Protein Kinases Are Present in Painful Human Neuromas [J].
Black, Joel A. ;
Nikolajsen, Lone ;
Kroner, Karsten ;
Jensen, Troels S. ;
Waxman, Stephen G. .
ANNALS OF NEUROLOGY, 2008, 64 (06) :644-653
[6]   Cloning, distribution and functional analysis of the type III sodium channel from human brain [J].
Chen, YH ;
Dale, TJ ;
Romanos, MA ;
Whitaker, WRJ ;
Xie, XM ;
Clare, JJ .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2000, 12 (12) :4281-4289
[7]   Persistent sodium current in mammalian central neurons [J].
Crill, WE .
ANNUAL REVIEW OF PHYSIOLOGY, 1996, 58 :349-362
[8]  
Cummins TR, 1998, J NEUROSCI, V18, P9607
[9]  
Cummins TR, 1997, J NEUROSCI, V17, P3503
[10]   Nav1.3 sodium channels: Rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons [J].
Cummins, TR ;
Aglieco, F ;
Renganathan, M ;
Herzog, RI ;
Dib-Hajj, SD ;
Waxman, SG .
JOURNAL OF NEUROSCIENCE, 2001, 21 (16) :5952-5961