RNA interference in cancer

被引:132
作者
Gartel, AL
Kandel, ES
机构
[1] Univ Illinois, Dept Med, Chicago, IL 60612 USA
[2] Cleveland Clin Fdn, Lerner Res Inst, Dept Mol Genet, Cleveland, OH 44122 USA
来源
BIOMOLECULAR ENGINEERING | 2006年 / 23卷 / 01期
关键词
D O I
10.1016/j.bioeng.2006.01.002
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In the recent years, RNA interference (RNAi) has emerged as a major regulatory mechanism in eukaryotic gene expression. The realization that changes in the levels of microRNAs are directly associated with cancer led to the recognition of a new class of tumor suppressors and oncogenes. Moreover, RNAi has been turned into a potent tool for artificially modulating gene expression through the introduction of short interfering RNAs. A plethora of individual inhibitory RNAs as well as several large collections of these reagents have been generated. The systems for stable and regulated expression of these molecules emerged as well. These tools have helped to delineate the roles of various cellular factors in oncogenesis and tumor suppression and laid the foundation for new approaches in gene discovery. Furthermore, successful inhibition of tumor cell growth by RNAi aimed at oncogenes in vitro and in vivo supports the enthusiasm for potential therapeutic applications of this technique. In this article we review the evidence of microRNA involvement in cancer, the use of short interfering RNAs in forward and reverse genetics of this disease, and as well as both the benefits and limitations of experimental RNAi. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 34
页数:18
相关论文
共 156 条
[1]   Interaction of human DNA topoisomerase I with G-quartet structures [J].
Arimondo, PB ;
Riou, JF ;
Mergny, JL ;
Tazi, J ;
Sun, JS ;
Garestier, T ;
Hélène, C .
NUCLEIC ACIDS RESEARCH, 2000, 28 (24) :4832-4838
[2]   Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening [J].
Aza-Blanc, P ;
Cooper, CL ;
Wagner, K ;
Batalov, S ;
Deveraux, QL ;
Cooke, MP .
MOLECULAR CELL, 2003, 12 (03) :627-637
[3]   Tyrosine phosphorylation of paxillin affects the metastatic potential of human osteosarcoma [J].
Azuma, K ;
Tanaka, M ;
Uekita, T ;
Inoue, S ;
Yokota, J ;
Ouchi, Y ;
Sakai, R .
ONCOGENE, 2005, 24 (30) :4754-4764
[4]   Phylogenetic shadowing and computational identification of human microRNA genes [J].
Berezikov, E ;
Guryev, V ;
van de Belt, J ;
Wienholds, E ;
Plasterk, RHA ;
Cuppen, E .
CELL, 2005, 120 (01) :21-24
[5]   A large-scale RNAi screen in human cells identifies new components of the p53 pathway [J].
Berns, K ;
Hijmans, EM ;
Mullenders, J ;
Brummelkamp, TR ;
Velds, A ;
Heimerikx, M ;
Kerkhoven, RM ;
Madiredjo, M ;
Nijkamp, W ;
Weigelt, B ;
Agami, R ;
Ge, W ;
Cavet, G ;
Linsley, PS ;
Beijersbergen, RL ;
Bernards, R .
NATURE, 2004, 428 (6981) :431-437
[6]   Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism [J].
Bhowmick, NA ;
Ghiassi, M ;
Bakin, A ;
Aakre, M ;
Lundquist, CA ;
Engel, ME ;
Arteaga, CL ;
Moses, HL .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (01) :27-36
[7]   miR-15a and miR-16-1 down-regulation in pituitary adenomas [J].
Bottoni, A ;
Piccin, D ;
Tagliati, F ;
Luchin, A ;
Zatelli, MC ;
Uberti, ECD .
JOURNAL OF CELLULAR PHYSIOLOGY, 2005, 204 (01) :280-285
[8]   Induction of an interferon response by RNAi vectors in mammalian cells [J].
Bridge, AJ ;
Pebernard, S ;
Ducraux, A ;
Nicoulaz, AL ;
Iggo, R .
NATURE GENETICS, 2003, 34 (03) :263-264
[9]   Cellular proteins prevent antisense phosphorothioate oligonucleotide (SdT18) to target sense RNA (rA18): Development of a new in vitro assay [J].
Brukner, I ;
Tremblay, GA .
BIOCHEMISTRY, 2000, 39 (37) :11463-11466
[10]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553