Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization

被引:574
作者
Tsujii, Yoshinobu [1 ]
Ohno, Kohji [1 ]
Yamamoto, Shinpei [1 ]
Goto, Atsushi [1 ]
Fukuda, Takeshi [1 ]
机构
[1] Kyoto Univ, Chem Res Inst, Kyoto 6110011, Japan
来源
SURFACE-INITIATED POLYMERIZATION I | 2006年 / 197卷
关键词
graft polymerization; living radical polymerization; polymer brush; surface modification; tethering polymer;
D O I
10.1007/12_063
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Surface modifications by polymers are becoming increasingly important for various applications ranging from biotechnology to advanced microelectronics. Recent successful applications of living radical polymerization (LRP) made it possible to graft various low-polydispersity polymers including simple homopolymers, end-functionalized polymers, block/random/gradient copolymers, and functional polymers. At the same time, this technique has brought about a striking increase of graft density. Graft chains in such a high-density polymer brush were found to be highly extended in good solvent, even to the order of their full lengths. It was also found that a high-density polymer brush has characteristic properties, in both swollen and dry states, quite different and unpredictable from those of the semi-dilute or moderately dense polymer brushes previously studied. This review highlights the recent development of surface-initiated LRP and the structures, properties, and potential applications of thereby obtainable high-density polymer brushes. It is believed that surface-initiated LRP is opening up a new route to "precision" surface modification.
引用
收藏
页码:1 / 45
页数:45
相关论文
共 212 条
[11]   Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique [J].
Baum, M ;
Brittain, WJ .
MACROMOLECULES, 2002, 35 (03) :610-615
[12]   Development of a universal alkoxyamine for "living" free radical polymerizations [J].
Benoit, D ;
Chaplinski, V ;
Braslau, R ;
Hawker, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (16) :3904-3920
[13]   Kinetics and mechanism of controlled free-radical polymerization of styrene and n-butyl acrylate in the presence of an acyclic β-phosphonylated nitroxide [J].
Benoit, D ;
Grimaldi, S ;
Robin, S ;
Finet, JP ;
Tordo, P ;
Gnanou, Y .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (25) :5929-5939
[14]  
Bergbreiter DE, 2000, J POLYM SCI POL CHEM, V38, P3944, DOI 10.1002/1099-0518(20001101)38:21<3944::AID-POLA110>3.0.CO
[15]  
2-F
[16]   TETHERED ADSORBING CHAINS - NEUTRON REFLECTIVITY AND SURFACE PRESSURE OF SPREAD DIBLOCK COPOLYMER MONOLAYERS [J].
BIJSTERBOSCH, HD ;
DEHAAN, VO ;
DEGRAAF, AW ;
MELLEMA, M ;
LEERMAKERS, FAM ;
STUART, MAC ;
VANWELL, AA .
LANGMUIR, 1995, 11 (11) :4467-4473
[17]   Production of crosslinked, hollow nanoparticles by surface-initiated living free-radical polymerization [J].
Blomberg, S ;
Ostberg, S ;
Harth, E ;
Bosman, AW ;
Van Horn, B ;
Hawker, CJ .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2002, 40 (09) :1309-1320
[18]   GRAFTING KINETICS OF POLY(METHYL METHACRYLATE) ON MICROPARTICULATE SILICA [J].
BOVEN, G ;
OOSTERLING, MLCM ;
CHALLA, G ;
SCHOUTEN, AJ .
POLYMER, 1990, 31 (12) :2377-2383
[19]   Synthesis, characterization, and properties of polyelectrolyte block copolymer brushes prepared by atom transfer radical polymerization and their use in the synthesis of metal nanoparticles [J].
Boyes, SG ;
Akgun, B ;
Brittain, WJ ;
Foster, MD .
MACROMOLECULES, 2003, 36 (25) :9539-9548
[20]   Synthesis, characterization, and properties of ABA type triblock copolymer brushes of styrene and methyl acrylate prepared by atom transfer radical polymerization [J].
Boyes, SG ;
Brittain, WJ ;
Weng, X ;
Cheng, SZD .
MACROMOLECULES, 2002, 35 (13) :4960-4967